
The Essence of Live Coding: Change the Program,
Keep the State!

Manuel Bärenz
sonnen eServices GmbH

Germany

Abstract
One rarely encounters programming languages and frame-
works that provide general-purpose and type-safe hot code
swap. It is demonstrated here that this is entirely possible
in Haskell, by faithfully following the motto of live coding:
“Change the program, keep the state.”

With generic programming, one easily arrives at an au-
tomatic state migration function. The approach can be gen-
eralised to an arrowized Functional Reactive Programming
framework that is parametrized by its side effects. It allows
for building up complete live programs from reusable, mod-
ular components, and to separate data flow cleanly from
control flow. Useful utilities for debugging and quickcheck-
ing are presented.

CCS Concepts: • Theory of computation → Formal lan-
guages and automata theory; •Computingmethodologies
→Animation; •Computer systems organization→Data
flow architectures; • Software and its engineering→ State
systems; Functional languages; Data types and structures.

Keywords: Livecoding, Functional Reactive Programming
ACM Reference Format:
Manuel Bärenz. 2020. The Essence of Live Coding: Change the
Program, Keep the State!. In Proceedings of the 7th ACM SIGPLAN
International Workshop on Reactive and Event-Based Languages and
Systems (REBLS ’20), November 16, 2020, Virtual, USA. ACM, New
York, NY, USA, 13 pages. https://doi.org/10.1145/3427763.3428312

1 Introduction
Live coding has come to denote various concepts, from hot
code swap on a production server to artistic performances
with code that is written, executed and updated live. From
the implementor’s perspective, the common denominator is

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
REBLS ’20, November 16, 2020, Virtual, USA
© 2020 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 978-1-4503-8188-8/20/11. . . $15.00
https://doi.org/10.1145/3427763.3428312

a framework to update the definition of a program while not
interrupting its execution.
In a dynamically typed, process-oriented language, such

as Erlang [4], hot code swap is conceptually simple: A new
server process is started, the state of the old server is trans-
ferred to the new one, and the old server is shut down. The
challenge lies in ensuring that the state is correctly migrated,
as corrupt state might crash the server. This is a nontrivial
task if no type checker is available to verify if the migrated
state conforms to the schema required by the new server.
Domain specific live coding frameworks usually have a

central server that generates the desired effect – be it audio,
video or device communication – and offers an API through
which users can create “cells”, such as oscillators or signal
processors in the case of audio (such as [31]), and connect, re-
order, update or destroy them during execution. The central
server guarantees safe updates, and strongly typed user-side
libraries (such as Tidal [20] for audio applications) exist, but
the user is restricted to a domain specific language.

In dynamic languages like SmallTalk [16], new avenues to
live coding open by interacting with the interpreter, which
holds the whole program in memory. In a statically compiled
language lacking a comparable depth of reflection, this not
directly possible, so one must abstract the program and its
state into data structures, and implement hot code swap. One
end of the design space are concurrent references to program
components which can be exchanged, [2, 3, 24] which are
somewhat closer to an interpreted environment. Let us re-
strict to the other end, though, where the possible data and
control states are known at compile time, constraining the
resulting framework slightly, but allowing for a very smooth
development experience.
In this article, we implement a lightweight general pur-

pose live coding framework in Haskell from scratch. It is not
only type-safe, but also type-driven, in that boilerplate code
for state migrations (which is hard to get right without a
static type checker) is automatically derived from the type.
It is not restricted to a particular domain, by virtue of be-
ing parametrised over an arbitrary monad: Any domain- or
library-specific effect can be incorporated effortlessly, and
handled with standard Haskell functions. The framework fol-
lows the tradition of monadic arrowized Functional Reactive
Programming (FRP) as developed in [27] and [25]. To run
live programs created in it, a runtime environment in the IO
monad is supplied, but since the framework does not hide

https://doi.org/10.1145/3427763.3428312
https://doi.org/10.1145/3427763.3428312

REBLS ’20, November 16, 2020, Virtual, USA Manuel Bärenz

IO in its abstraction (such as many other FRP frameworks
do), it is an easy exercise to execute the live programs in e.g.
the STM monad [12] or any other concurrency context such
as an external main loop. The state of the live program can
be inspected and debugged safely during the execution.

There is no subtly clever trick. We simply follow, dutifully
and without compromise, the mantra of live coding:

Change the program. Keep the state.
This is not a new idea in itself. Hot code swap in Erlang
realises this motto, and similar views are expressed about
live coding in Elm1 (a web frontend DSL inspired by Haskell).
What is new about this work is the consequential application
of this motto to create a general purpose, type-safe FRP
framework2 with automatic state migration.

Arriving at a simple state migration function by faithfully
following the live coding mantra is a manageable task, car-
ried out in Section 2. Upon the migration function, a live
coding framework is constructed in Section 3. It is muchmore
rewarding to recast this framework in the form of functional
reactive programming, which allows us to reuse modular,
functional components and separate data flow from control
flow. Crucially, the state of our live programs is built up
automatically by using FRP idioms. The result is presented
in Section 4, which heavily draws inspiration from Dunai, a
monadic arrowized FRP framework; and from Caspi’s and
Pouzet’s work on synchronous stream functions [6]. After
having implemented the data flow aspects of our framework,
we turn to control flow in Section 5, and encode it completely
algebraically within the program state, automatically getting
a grip on exception handling and loops. A monadic interface
to our live programs is presented. In Section 6, several useful
tools such as debuggers and quickcheck utilities are shown.
This article is written in literate Haskell and supplies

the library presented here. The source code is available at
https://github.com/turion/essence-of-live-coding, while ad-
ditional resources such as a presentation can be found at
https://www.manuelbaerenz.de/#computerscience.

2 Change the program. Keep the state (as
far as possible).

Our model of a live program will consist of a state and an
effectful state transition function. A preliminary version is
shown in Figure 13. The program is initialised at a certain
state, and from there its behaviour is defined by repeatedly
applying the function liveStep to advance the state and pro-
duce effects. This is implemented in stepProgram. Since we

1Compare https://elm-lang.org/blog/interactive-programming.
2It shall be remarked that FRP is long past niche applications in the video and
audio domains. It is possible to write web servers and frontends, simulations
and games in it.
3The notation $ may be unfamiliar. It can be read as "apply brackets until
the end of the following expression". For example, f $ g $ h a b c is
essentially the same as f (g (h a b c)).

data LiveProgram m s = LiveProgram
{ liveState :: s
, liveStep :: s -> m s
}

stepProgram
:: Monad m
=> LiveProgram m s -> m (LiveProgram m s)

stepProgram liveProgram@LiveProgram { .. } = do
liveState' <- liveStep liveState
return liveProgram { liveState = liveState' }

stepProgramMVar
:: MVar (LiveProgram IO s)
-> IO ()

stepProgramMVar var = do
currentProgram <- takeMVar var
nextProgram <- stepProgram currentProgram
putMVar var nextProgram

launch
:: LiveProgram IO s
-> IO (MVar (LiveProgram IO s))

launch liveProgram = do
var <- newMVar liveProgram
forkIO $ forever $ stepProgramMVar var
return var

Figure 1. LiveProgramPreliminary.lhs

want to run the program in a separate thread while compil-
ing a new version of the program in the foreground, we have
to store the program in a a concurrent variable, here an MVar.
Given this variable, stepping the program it contains is a
simple IO action, implemented in stepProgramMVar. To run
the program, we fork a background thread and repeatedly
call stepProgramMVar there.
In a dynamically typed language, such a setup is in prin-

ciple enough to implement hot code swap. At some point,
the execution will be paused, and the function liveStep
is simply exchanged for a new one. Then the execution is
resumed with the new transition function, which operates
on the old state. Of course, the new step function has to take
care of migrating the state to a new format, should this be
necessary. The difficulties arise (apart from the practicali-
ties of the implementation), from the inherent unsafety of
this operation: Even if the old transition function behaved
correctly, and the old state is in a valid format, the new tran-
sition function may crash or otherwise misbehave on the
old state. It is very hard to reduce the probability of such a
failure with tests since the current state constantly changes
(by design). A static typechecker is missing, to guarantee the
safety of this operation.
But let us return to Haskell, where we have such a type-

checker. It immediately points out the unsafety of the migra-
tion: There is no guarantee that the new transition function
will typecheck with the old state! In fact, in many situations,

https://github.com/turion/essence-of-live-coding
https://www.manuelbaerenz.de/#computerscience
https://elm-lang.org/blog/interactive-programming

The Essence of Live Coding: Change the Program, Keep the State! REBLS ’20, November 16, 2020, Virtual, USA

hotCodeSwap
:: (s -> s')
-> LiveProgram m s'
-> LiveProgram m s
-> LiveProgram m s'

hotCodeSwap migrate newProgram oldProgram
= LiveProgram
{ liveState = migrate $ liveState oldProgram
, liveStep = liveStep newProgram
}

Figure 2. Preliminary/HotCodeSwap.lhs

the state type needs to be modified, and there is no function
of type LiveProgram m s -> LiveProgram m s' already
because there is no function of type s -> s'.
This kind of problem is not unknown. In the world of

databases, it is commonplace that a table lives much longer
than its initial schema. The services accessing the data can
change, and thus also the requirements to the data format.
The solution to this problem is a schema migration, an update
to the database schema that alters the table in such a way
that as little data as possible is lost, and that the table adheres
to the new schema afterwards. Data loss is not entirely pre-
ventable, though. If a column has to be deleted, its data will
not be recoverable. In turn, if a column is created, one has
to supply a sensible default value (often NULL will suffice).

2.1 Migrating the State
We can straightforwardly adopt this solution by thinking of
the program state as a small database table with a single row.
Its schema is the type s. Given a type migration function, we
can perform hot code swap, as shown in Figure 2. We need
to supply the old live program, the new live program, and a
suitable migration function.

This may be an acceptable solution to perform a planned,
well-prepared intervention, but it does spoil the fun in a
musical live coding performance if the programmer has to
write a migration function after every single edit. What a live
performer actually needs, is a function with this mysterious
type signature:
hotCodeSwap

:: LiveProgram m s'
-> LiveProgram m s
-> LiveProgram m s'

It is the same type signature as in Figure 2, but with the first
argument, the manual migration function, removed. The new
program, including its initial state, has just been compiled,
and the old program is still stored in a concurrent variable.
Can we possibly derive the new state by simply looking at
the initial state of the new program and the old state? Is
there a magical, universal migration function? If there were,
it would have this type:

migrate :: s' -> s -> s'

A theoretician will probably invoke a free theorem [30] here,
and infer that there is in fact a unique such function: const!
But it is not what wewere hoping for. const s' swill throw
away the old state and run the program with the new initial
state – effectively restarting our program from a blank slate.

In this generality, we cannot hope for any other solution.
But in the following, we are going to see how to tweak the
live program definition by only twenty characters, and arrive
at an effective migration function.

2.2 Type-Driven Migrations
In many cases, knowing the old state and the new initial
state is sufficient to derive the new, migrated state safely. As
an example, imagine the internal state of a simple webserver
that counts the number of visitors to a page.
data State = State { nVisitors :: Int }

The server is initialised at 0, and increments the number of
visitors every step. (For a full-fledged webserver, the reader
is asked to patiently wait until the next section.)
server = LiveProgram (State 0) $ \State { .. }

-> State $ return $ nVisitors + 1

We extend the state by the name of the last user agent to
access the server (initially not present):
data State = State Int (Maybe ByteString)
initState = State 0 Nothing

From just comparing the two datatype definitions, it is ap-
parent that we would want to keep the number of visitors,
of type Int, when migrating. For the new argument of type
Maybe ByteString, we cannot infer any sensible value from
the old state, but we can take the value Nothing from the
new initial state, and interpret it as a default value. A general
state migration function should specialise to:
migrate (Server1.State nVisitors)

(Server2.State _ mUserAgent)
= Server2.State nVisitors mUserAgent

Our task was less obvious if we would have extended the
state by the last access time, encoded as a UNIX timestamp:
data State = State Int Int

Here it is unclear to which of the Ints the old value should
be migrated. It is obvious again if the datatype was defined
as a record as well:
data State = State

{ nVisitors :: Int
, lastAccessUNIX :: Int
}

We need to copy the nVisitors field from the old state,
and initialise the lastAccessUNIX field from the new state.
(Conversely, if we were to migrate back to the original
definition, there is no way but to lose the data stored in
lastAccessUNIX.) Clearly, the record labels enabled us to

REBLS ’20, November 16, 2020, Virtual, USA Manuel Bärenz

userMigrate
:: (Data a, Data b, Typeable c, Typeable d)
=> (c -> d)
-> a -> b -> a

intToInteger :: Int -> Integer
intToInteger = toInteger

Figure 3. User migration

identify the correct target field. The solution lies in the
datatype definition.

We can meta-program a migration function by reasoning
about the structure of the type definition. This is possible
with the techniques presented in the seminal, now classic
article “Scrap Your Boilerplate” [19]. It supplies a typeclass
Typeable which enables us to compare types and safely
type-cast at runtime, and a typeclass Data which allows us
to inspect constructor names and record field labels. Using
the package syb, which supplies common utilities when
working with Data, our migration function is implemented
in under 50 lines of code, with the following signature:

migrate :: (Data a, Data b) => a -> b -> a

It handles the two previously mentioned cases: Constructors
with the same names, but some mismatching arguments,
and records with some coinciding field labels, but possibly a
different order. In nested datatype definitions, the function
recurses into all children of the data tree. Needless to say, if
the types do match, then the old state is identically copied.

Sometimes it is necessary to manually migrate some part
of the state. Assume, for the sake of the example, that our
webserver has become wildly popular, and nVisitors is
close to maxInt. We need to migrate this value to an arbitrary
precision Integer. It is easy to extend migrate by a special
case provided by the user, shown in Figure 3. Here, we would
use userMigrate intToInteger to migrate the state.
To use the automatic migration function, we only need

to update the live program definition to include the Data
constraint, as shown in Figure 4. This is a small restriction.
The Data typeclass can be automatically derived for every
algebraic data type, except those that incorporate functions.
We have to refactor our live program such that all functions
are contained in liveStep (and can consequently not be
migrated), and all data is contained in liveState.

Now that we have a universal migration function, it is not
necessary to carry the type of the state around in the type
signature. In fact it would be cumbersome in combination
with MVars (which can’t change their type), and a real burden
when later modularising the state. Consequently, the type is
made existential. The only necessary information is that it
is an instance of Data.

data LiveProgram m = forall s . Data s
=> LiveProgram
{ liveState :: s
, liveStep :: s -> m s
}

hotCodeSwap
:: LiveProgram m
-> LiveProgram m
-> LiveProgram m

hotCodeSwap
(LiveProgram newState newStep)
(LiveProgram oldState _)
= LiveProgram
{ liveState = migrate newState oldState
, liveStep = newStep
}

Figure 4. LiveProgram.lhs

3 The Runtime
3.1 Hands on Interaction
Enough declaration. Let us get semantic and run some
live programs! In the preliminary version, a function
stepProgram implemented a single execution step, and it
can be reused here, up to removing the explicit state type.
The runtime behaviour of a live program is defined by calling
this function repeatedly. We could of course run the program
in the foreground thread:
foreground :: Monad m => LiveProgram m -> m ()
foreground liveProgram = do
stepProgram liveProgram
foreground liveProgram

But this would leave no possibility to exchange the program
with a new one. Instead, we can store the program in an MVar
and call stepProgramMVar on it. Now that we can migrate
any Data, we can follow the original plan of exchanging the
live program in mid-execution:
update

:: MVar (LiveProgram IO)
-> LiveProgram IO
-> IO ()

update var newProg = do
oldProg <- takeMVar var
putMVar var $ hotCodeSwap newProg oldProg

The old program is retrieved from the concurrent variable,
migrated to the new state, and put back for further execution.
And so begins our first live coding session in GHCi (line
breaks added for readability):
> var <- newMVar $ LiveProgram 0

$ \s -> print s >> return (s + 1)
> stepProgramMVar var
0

The Essence of Live Coding: Change the Program, Keep the State! REBLS ’20, November 16, 2020, Virtual, USA

> stepProgramMVar var
1
> update var $ LiveProgram 0

$ \s -> print s >> return (s - 1)
> stepProgramMVar var
2
> stepProgramMVar var

1
> stepProgramMVar var
0

Upon updating, the state was correctly preserved. The pro-
grams were specified in the interactive session here, but of
course we will want to load the program from a file, and use
GHCi’s :reload functionality when we have edited it. But as
soon as we do this, the local binding var is lost. The package
foreign-store [9] offers a remedy: var can be stored per-
sistently across reloads. To facilitate its usage, GHCi macros
are defined for the initialisation and reload operations.

Of course, it is not intended to enter :livestep repeatedly
when coding. We want to launch a separate thread which
executes the steps in the background. Again, we can reuse the
function launch. (Only the type signature needs updating.)
Using ghcid (“GHCi as a daemon” [23]), the launching and
reloading operations can be automatically triggered upon
starting ghcid and editing the code, allowing for a smooth
live coding experience without any manual intervention.

In the next subsection, a full example is shown.

3.2 Live Coding a Webserver
To show that live coding can be applied to domains out-
side audio and video applications, let us realise the example
from the previous section and create a tiny webserver using
the WAI/Warp framework [33]. It is supposed to count the
number of visitors, and keep this state in memory when we
change the implementation.

The boiler plate code, which is suppressed here, initialises
the Warp server, uses launch to start our live program in a
separate thread and waits for user input to update it.
To save ourselves an introduction to Warp, we will com-

municate to it via two MVars, which we need to share with
the live program. The textbook solution is to supply the
variables through a Reader environment, which needs to
supplied to the live program before execution. This can be
done by transporting the program along the runReaderT
monad morphism. A function hoistLiveProgram does this
(borrowing nomenclature from the mmorph [11] package).

The server logic is shown in Figure 6. It is initialised at
0 visitors. The step function receives the number of past
visitors and blocks on an MVar until a request (which is
discarded) to the server arrives. The number of visitors is
incremented by 1, and baked into a response, which is in
another MVar. Finally, the updated state (the incremented
number of visitors) is returned, and passed to the next step.

data Env = Env
{ requestVar :: MVar Request
, responseVar :: MVar String
}

Figure 5. DemoWai.lhs

data State = State
{ nVisitors :: Integer
} deriving Data

oldServer :: LiveProgram (ReaderT Env IO)
oldServer = LiveProgram
{ liveState = State 0
, liveStep = \State { .. } -> do

Env { .. } <- ask
_ <- lift $ takeMVar requestVar
let nVisitorsNew = nVisitors + 1
lift $ putMVar responseVar $ unlines

["Ye Olde Server greets visitor #"
<> show nVisitorsNew <> "."
]

return $ State nVisitorsNew
}

Figure 6. DemoWai1.lhs

We then modify4 the server logic as in Figure 7. Addition-
ally to the number of visitors, we also store the last user
agent name in the state, if it was sent. For this, one more
record field is added to the state type.

Let us run the old server, and switch to the new one during
execution. From a console, we access the running server:
$ curl localhost:8080
Ye Olde Server greets visitor #1.
$ curl localhost:8080
Fancy Nu $3rv3r says HI to #2.
$ curl localhost:8080
Fancy Nu $3rv3r says HI to #3.
Last agent: curl/7.72.0

It correctly remembered the number of past visitors upon
reload and initialised the last user agent with the value
Nothing. When accessing the new server again, it stored
the user agent as expected.

4 Live Coding as Arrowized Functional
Reactive Programming

Writing out the complete state of the live program explicitly
is tedious. We have to plan the whole program in advance
and artificially separate its state from the step function. Such
a development approach prevents us from writing programs
4The function unpack from the bytestring package converts between
different kinds of strings. requestHeaders from the wai package extracts
HTTP headers, such as the user agent name, from a request.

REBLS ’20, November 16, 2020, Virtual, USA Manuel Bärenz

data State = State
{ nVisitors :: Integer
, lastAgent :: Maybe String
} deriving Data

newServer :: LiveProgram (ReaderT Env IO)
newServer = LiveProgram

{ liveState = State 0 Nothing
, liveStep = \State { .. } -> do

Env { .. } <- ask
request <- lift $ takeMVar requestVar
let nVisitorsNew = nVisitors + 1

lastAgentStrings = case lastAgent of
Nothing -> []
Just str -> ["Last agent: " <> str]

lastAgentNew = fmap unpack
$ lookup "User-Agent"
$ requestHeaders request

lift $ putMVar responseVar $ unlines $
["Fancy Nu $3rv3r says HI to #"
<> show nVisitorsNew <> "."
] ++ lastAgentStrings

return $ State nVisitorsNew lastAgentNew
}

Figure 7. DemoWai2.lhs

in a modular fashion. The purpose of this section is to show
that we can develop live programs modularly by extending
the approach presented so far to an arrowized FRP frame-
work. Coincidentally, but naturally, we will end up with a
coalgebraic presentation of synchronous stream functions
which differs from Caspi’s and Pouzet’s work [6] only in
notation and the presence of monads.

In ordinary functional programming, the smallest building
blocks are functions. It stands to reason that in live coding,
they should also be some flavour of functions, in fact, Arrows
[15]. We will see that it is possible to define bigger live pro-
grams from reusable components. Crucially, the library user
is disburdened from separating state and step function. The
state type is built up behind the scenes, in a manner compat-
ible with the automatic state migration.

4.1 Cells
In our definition of live programs as pairs of state and state
steppers, we can generalise the step functions to an addi-
tional input and output type. Live programs are thus gener-
alised to effectfulMealy machines [21]. Let us call them cells,
the building blocks of everything live:

data Cell m a b = forall s . Data s => Cell
{ cellState :: s
, cellStep :: s -> a -> m (b, s)
}

Such a cell may progress by one step, consuming an a as
input, and producing, by means of an effect in some monad
m, not only the updated cell, but also an output datum b:
step

:: Monad m
=> Cell m a b
-> a -> m (b, Cell m a b)

step Cell { .. } a = do
(b, cellState') <- cellStep cellState a
return (b, Cell { cellState = cellState', .. })

As a simple example, consider the following Cell which
adds all input and returns the delayed sum each step:
sumC :: (Monad m, Num a, Data a) => Cell m a a
sumC = Cell { .. }

where
cellState = 0
cellStep accum a = return (accum, accum + a)

We recover live programs as the special case of trivial
input and output:
liveCell

:: Monad m
=> Cell m () ()
-> LiveProgram m

liveCell Cell { .. } = LiveProgram
{ liveState = cellState
, liveStep = \state -> do

(_, state') <- cellStep state ()
return state'

}

4.2 FRP for Automata-Based Programming
Our cells are known in the literature as “Effectful Mealy
Machines”, “transducers” and “resumptions” [22], [28], [13,
Section 7], [1, Section 5.4]. They are known for their rele-
vance to stream functions [6], suggesting that they offer a
wide variety of applications in FRP. The essential parts of
the API, which is heavily inspired by the FRP library dunai
[27], are shown here. We will address the data flow aspects
in this section, investigating control flow later in Section 5.

Composition. By being an instance of the type class
Category, cells implement sequential composition:
(>>>) :: Monad m
=> Cell m a b
-> Cell m b c
-> Cell m a c

For two cells cell1 and cell2 with state types state1
and state2, the composite cell1 >>> cell2 holds a pair
of both states:
data Composition state1 state2 = Composition

{ state1 :: state1
, state2 :: state2
} deriving Data

The Essence of Live Coding: Change the Program, Keep the State! REBLS ’20, November 16, 2020, Virtual, USA

The step function executes the steps of both cells after each
other. They only touch their individual state variable, the
state stays encapsulated. The custom datatype is isomorphic
to an ordinary Haskell tuple (state1, state2). Yet it is
beneficial to introduce it, since it allows us to extend the
migration function easily such that it correctly handles the
common case where we live change a cell cellMiddle to
a composition, such as cellLeft >>> cellMiddle, or to
cellMiddle >>> cellRight.

The Sensor-SF-Actuator-Pattern. Composing Cells se-
quentially allows us to form live programs out of sensors,
pure signal functions and actuators:
type Sensor a = Cell IO () a
type SF a b = forall m . Cell m a b
type Actuator b = Cell IO b ()

buildProg :: Sensor a -> SF a b -> Actuator b
-> LiveProgram IO

buildProg sensor sf actuator = liveCell
$ sensor >>> sf >>> actuator

This (optional) division of the reactive program into three
such parts is inspired by Yampa [25], and was formulated in
this way in [27, Section 7.1.2]. We conveniently build a whole
live program from smaller components. It is never necessary
to specify a big state type manually, it will be composed from
basic building blocks like Composition.

Arrowized FRP. Cells are an instance of the Arrow type
class, which allows us to lift pure functions to Cells:
arr

:: Monad m => (a -> b)
-> Cell m a b

Together with the ArrowChoice and ArrowLoop classes (dis-
cussed in the appendix), cells can be used in arrow notation
[26] with case-expressions, if then else constructs and
recursion. The next subsection gives some examples.
An essential aspect of an FRP framework is some notion

of time. As this approach essentially uses the dunai API, a
detailed treatment of time domains and clocks as in rhine
[5] could be readily applied here, but this will be deferred to
future work. For simplicity and explicitness, assume that we
will execute all Cells at a certain fixed step rate, say, twenty
five steps per second. Then Euler integration can be defined:
stepRate :: Num a => a
stepRate = 25

integrate
:: (Data a, Fractional a, Monad m)
=> Cell m a a

integrate = arr (/ stepRate) >>> sumC

The time since activation of a cell is then famously [25, Sec-
tion 2.4] defined as:
localTime

:: (Data a, Fractional a, Monad m)

=> Cell m b a
localTime = arr (const 1) >>> integrate

Monads and Their Morphisms. Beyond standard ar-
rows, a Cell can encode effects in a monad, so it is not
surprising that Kleisli arrows can be lifted:
arrM

:: Monad m => (a -> m b)
-> Cell m a b

In case our Cell is in another monad than IO, one can
define a function that transports a cell along a monad mor-
phism:
hoistCell

:: (forall x . m1 x -> m2 x)
-> Cell m1 a b -> Cell m2 a b

For example, we may eliminate a ReaderT r context by sup-
plying the environment through the runReaderT monad
morphism, or lift into a monad transformer:
liftCell

:: (Monad m, MonadTrans t)
=> Cell m a b
-> Cell (t m) a b

liftCell = hoistCell lift

As described in [27, Section 4], we can successively handle
effects (such as global state, read-only variables, logging,
exceptions, and others) until we arrive at IO. Then we can
execute the live program in the same way as before.

4.3 A Sine Generator
Making use of the Arrows syntax extension5, we can imple-
ment a harmonic oscillator that will produce a sine wave
with amplitude 10 and given period length:
sine

:: MonadFix m
=> Double -> Cell m () Double

sine t = proc () -> do
rec
let acc = - (2 * pi / t) ^ 2 * (pos - 10)
vel <- integrate -< acc
pos <- integrate -< vel

returnA -< pos

By the laws of physics, velocity is the integral of accellera-
tion, and position is the integral of velocity. In a harmonic
oscillator, the acceleration is in the negative direction of
the position, multiplied by a spring factor depending on the
period length, which can be given as an argument. The inte-
gration arrow encapsulates the current position and velocity
of the oscillator as internal state, and returns the position.

5Arrow notation – or proc .. do notation – is similar to monadic do
notation, except that not only is there a dedicated binder <- for output
values, but also an application operator -< for input values. The notation is
desugared into the arrow operators, such as arr and the composition >>>.

REBLS ’20, November 16, 2020, Virtual, USA Manuel Bärenz

The sine generator could in principle be used in an audio
or video application. For simplicity, we choose to visualise
the signal on the console instead, with our favourite Haskell
operator varying its horizontal position:
asciiArt :: Double -> String
asciiArt n = replicate (round n) ' ' ++ ">>="

printEverySecond :: Cell IO String ()
printEverySecond = proc string -> do
count <- sumC -< 1 :: Integer
if count `mod` stepRate == 0
then arrM putStrLn -< string
else returnA -< ()

Our first live program written in FRP is assembled using the
pattern of sensor, signal function and actuator:
printSine :: Double -> LiveProgram IO
printSine t = liveCell
$ sine t
>>> arr asciiArt
>>> printEverySecond

What if we would run it, and change the period in mid-
execution? We execute the program such that after a certain
time, the live environment inserts printSinewith a different
period. Let us execute it:6

>>=
>>=

>>=
>>=

>>=
>>=

>>=
>>=
>>=

>>=
>>=

>>=
>>=

It is clearly visible how the period of the oscillator changed,
while its position (or, in terms of signal processing, its phase)
did not jump. If we use the oscillator in an audio application,
we can retune it without hearing a glitch; if we use it in
a video application, the widget will smoothly change its
oscillating velocity without a jolt.

5 Control Flow
Although we now have the tools to build big signal pathways
from single cells, we have no way yet to let the incoming data
decide which of several offered pathways to take for the rest
of the execution. While we can (due to ArrowChoice) tem-
porarily branch between two cells using if then else, the
branching is reevaluated (and the previous choice forgotten)
every step. We are lacking permanent control flow.
6From now on, the GHCi commands will be suppressed.

The primeval arrowized FRP framework Yampa [25] caters
for this requirement by means of switching from a signal
function to another if an event occurs. Such mechanisms
are well studied, e.g. in [32]. Dunai [27, Section 5.3], taking
the monadic aspect seriously, rediscovers switching as ef-
fect handling in the Either monad. Although the state of
a Cell is strongly restricted by the Data type class, we can
reimplement this powerful approach to control flow with
few alterations, and make typical control flow patterns such
as exception handling and looping amenable to live coding
without further effort.

5.1 Exceptions
As in Dunai, whenever we wish to hand over control to
another component, we throw an exception as an effect in
the ExceptT monad (which is simply the Either monad
generalised to a monad transformer). This exception has
to be handled by choosing a new component based on the
exception value. The type checker can verify at the end that
all exceptions have been handled.
Dunai offers a Monad interface where the values in the

context are the thrown exceptions (and not the output data).
This offers a comfortable and idiomatic way of separating
data flow and control flow, resulting in well-structured code.
It will turn out that we can implement a Functor instance
effortlessly, and an Applicative instance with a little work,
but the Monad instance will be quite a high bar to clear.

Throwing Exceptions. No new concepts beyond the
function throwE :: Monad m => e -> ExceptT e m a
from the package transformers [10, 17] are needed:

throwC
:: Monad m
=> Cell (ExceptT e m) e arbitrary

throwC = arrM throwE

The above function simply throws the incoming exception.
To do this only if a condition is satisfied, if-constructs can
be used. For example, this cell forwards its input for a given
number of seconds, and then throws an exception:

wait
:: Monad m
=> Double
-> Cell (ExceptT () m) a a

wait tMax = proc a -> do
t <- localTime -< ()
if t >= tMax
then throwC -< ()
else returnA -< a

Handling Exceptions. In usual Haskell, the ExceptT
monad transformer is handled by running it:

runExceptT :: ExceptT e m b -> m (Either e b)

The Essence of Live Coding: Change the Program, Keep the State! REBLS ’20, November 16, 2020, Virtual, USA

The caller can now decide how to handle the value e, should
it occur. This approach can be adapted to cells. A function is
supplied that runs the ExceptT e layer:
runExceptC

:: (Data e, Monad m)
=> Cell (ExceptT e m) a b
-> Cell m a (Either e b)

To appreciate its inner workings, let us again look at the
state it encapsulates:
data ExceptState state e

= NotThrown state
| Exception e
deriving Data

As long as no exception occurred, runExceptC cell sim-
ply stores the state of cell, wrapped in the constructor
NotThrown. The output value b is passed on. As soon as the
exception e is thrown, the state switches to Exception e,
and the exception is output forever.
As soon as the exception is thrown, we can “live bind” it

to further cells as an extra input:
(>>>=) :: (Data e1, Monad m)

=> Cell (ExceptT e1 m) a b
-> Cell (ExceptT e2 m) (e1, a) b
-> Cell (ExceptT e2 m) a b

(>>>=) cell1 cell2 = proc a -> do
eb <- liftCell $ runExceptC cell1 -< a
case eb of
Right b -> returnA -< b
Left e -> cell2 -< (e, a)

We run the exception effect of the first cell. Before it has
thrown an exception, its output is simply forwarded. As
soon as the exception is thrown, the second cell is activated
and fed with the input and the thrown exception.

5.2 Control Flow Context
Inspired by [5, Section 2, "Control Flow through Exceptions"],
we introduce a newtype:
newtype CellExcept m a b e = CellExcept
{ runCellExcept :: Cell (ExceptT e m) a b }

We can enter the CellExcept context from an exception-
throwing cell, trying to execute it until the exception occurs:
try

:: Cell (ExceptT e m) a b
-> CellExcept m a b e

try = CellExcept

And we can leave it safely once we have proven that there
are no exceptions left to throw, i.e. the exception type is
empty (represented in Haskell by Void):
safely

:: Monad m
=> CellExcept m a b Void
-> Cell m a b

One way to prove the absence of further exceptions is, of
course, to run an exception-free cell:
safe

:: Monad m
=> Cell m a b
-> CellExcept m a b Void

The Return of the Monad. Our new hope is to give
Functor, Applicative and Monad instances to CellExcept.
We will explore now how this allows for rich control flow.

The Functor instance is not too hard. When an exception
is raised, we simply apply a given function to it:
instance Functor m

=> Functor (CellExcept m a b) where
fmap f (CellExcept cell) = CellExcept
$ hoistCell (withExceptT f) cell

The pure function of the Applicative class (or equiva-
lently, return of the Monad), is simply throwing an exception,
wrapped in the newtype:
pure

:: Monad m
=> e
-> CellExcept m a b e

pure e = CellExcept $ arr (const e) >>> throwC

Like the sequential application operator <*> from the
Applicative class can be defined from the bind operator
>>=, it can also be defined from the live bind operator >>>=
introduced previously. As a technical tour-de-force, even a
Monad instance for CellExcept can be derived with some
modifications. This is shown at length in an appendix7.

But how can Applicative and Monad be put to use? The
foreground value of CellExcept is the thrown exception.
With pure, such values are created, and Functor allows us
to perform computations with them. With Applicative and
Monad, we chain the execution of exception throwing cells:
sineWait

:: Double -> CellExcept IO () String Void
sineWait t = do
try $ arr (const "Waiting...") >>> wait 2
safe $ sine t >>> arr asciiArt

This do-block can be read intuitively. Initially, the first cell is
executed, which returns the message "Waiting..." every
second. After three seconds, it throws an exception, which is
handled by activating the sine generator. Since all exceptions
have been handled, we leave the CellExcept context and
run the resulting program:
printSineWait :: LiveProgram IO
printSineWait = liveCell

$ safely (sineWait 8)
>>> printEverySecond

7Available online at https://www.manuelbaerenz.de/essence-of-live-
coding/EssenceOfLiveCodingAppendix.pdf.

https://www.manuelbaerenz.de/essence-of-live-coding/EssenceOfLiveCodingAppendix.pdf
https://www.manuelbaerenz.de/essence-of-live-coding/EssenceOfLiveCodingAppendix.pdf

REBLS ’20, November 16, 2020, Virtual, USA Manuel Bärenz

Waiting...
Waiting...
>>=

>>=
>>=

>>=
>>=

>>=
>>=

>>=
>>=

>>=
>>=

The crucial advantage of handling control flow this way
is that the control state – that is, the information which
exceptions have been thrown and which cell is currently
active – is encoded completely in the overall state of the
live program, and can thus be migrated automatically. Let us
rerun the above example, but after the first try statement
has already passed control to the sine generator we shorten
the period length of the sine wave and reload:
Waiting...
Waiting...
>>=

>>=
>>=

>>=
>>=

>>=
>>=

>>=
>>=

>>=
>>=

>>=
>>=

The migrated program did not restart and wait again, but
remembered to immediately continue executing the sine
generator from the same phase as before. This is in contrast
to simplistic approaches to live coding in which the control
flow state is forgotten upon reload, and restarted each time.

In most other programming languages where control flow
is builtin, this would typically require reworking the com-
piler or interpreter, but in Haskell, we succeed entirely within
the language.

5.3 Exceptions Forever
What if we want to change between the oscillator and a
waiting period indefinitely? In other words, how do we re-
peatedly execute this action:
sinesWaitAndTry

:: MonadFix m
=> CellExcept m () String ()

sinesWaitAndTry = do
try $ arr (const "Waiting...") >>> wait 1
try $ sine 5 >>> arr asciiArt >>> wait 5

The one temptation we have to resist is to recurse in the
CellExcept context to prove the absence of exceptions:
sinesForever'

:: MonadFix m
=> CellExcept m () String Void

sinesForever' = do
sinesWaitAndTry
sinesForever'

It typechecks, but it does not execute correctly. As the ini-
tial state is built up, this definition inquires about the ini-
tial state of all cells in the do-expression, but the last one
is again sinesForever', and thus already initialising such
a cell hangs in an infinite loop. Using the standard func-
tion forever :: Applicative f => f a -> f () has
the same deficiency, as it is defined in the same way.
The resolution is an explicit loop operator, and faith in

the library user to remember to employ it.
foreverE

:: (Monad m, Data e)
=> e
-> Cell (ReaderT e (ExceptT e m)) a b
-> Cell m a b

The loop function receives as arguments an initial exception,
and a cell that is to be executed forever. Of course, the monad
m may again contain exceptions that can be used to break
from this loop. Again, it is instructive to look at the internal
state of the looped cell:
data ForeverE e s = ForeverE
{ lastException :: e
, initState :: s
, currentState :: s
}
deriving Data

foreverE e cell starts with the initial state of cell,
and a given value e. Then cell is stepped, mutating
currentState, until it encounters an exception. This new
exception is stored, and the cell is restarted with the original
initial state. The cell may use the additional input e to ask
for the last thrown exception (or the initial value, if none
was thrown yet). The exception is thus the only method of
passing on data to the next loop iteration.8 In our example,
we need not pass on any data, so a simpler version of the
loop operator is defined:
foreverC

:: (Data e, Monad m)
=> Cell (ExceptT e m) a b

8It is the user’s responsibility to ensure that it does not introduce a space
leak, for example through a lazy calculation that builds up bigger and bigger
thunks.

The Essence of Live Coding: Change the Program, Keep the State! REBLS ’20, November 16, 2020, Virtual, USA

-> Cell m a b
foreverC = foreverE () . liftCell
. hoistCell (withExceptT $ const ())

Now we can finally implement our cell:
sinesForever :: MonadFix m => Cell m () String
sinesForever = foreverC
$ runCellExcept
$ sinesWaitAndTry

printSinesForever :: LiveProgram IO
printSinesForever = liveCell

$ sinesForever
>>> printEverySecond

Let us run it:
Waiting...
>>=

>>=
>>=
>>=

>>=
Waiting...
>>=

>>=
>>=
>>=

>>=
Waiting...

6 Tooling
6.1 Debugging the Live State
Having the complete state of the program in one place allows
us to inspect and debug it in a central place. We might want
to interact with the user, display aspects of the state and
possibly even change it in place. In short, a debugger is a
program that can read and modify, as an additional effect,
the state of an arbitrary live program:
newtype Debugger m = Debugger

{ getDebugger :: forall s .
Data s => LiveProgram (StateT s m)

}

A simple debugger prints the unmodified state to the console:
gshowDebugger :: Debugger IO
gshowDebugger = Debugger
$ liveCell $ arrM $ const $ do
state <- get
lift $ putStrLn $ gshow state

Thanks to the Data typeclass, the state does not need to be an
instance of Show for this to work: syb offers a generic gshow
function. A more sophisticated debugger could connect to
a GUI and display the state there, even offering the user to
pause the execution and edit the state live. We can bake a
debugger into a live program:

withDebugger
:: Monad m
=> LiveProgram m
-> Debugger m
-> LiveProgram m

Again, let us understand the function through its state type:
data Debugging dbgState state = Debugging
{ state :: state
, dbgState :: dbgState
} deriving (Data, Eq, Show)

On every step, the debugger becomes active after the cell
steps, and is fed the current state of the main program.
Depending on dbgState, it may execute some side effects
or mutate the state, or do nothing at all9.
Live programs with debuggers are started just as usual.

Let us inspect the state of the example printSineWait from
Section 5.2. It is a simple, albeit lengthy exercise in generic
programming to prune all irrelevant parts of the state when
printing it, resulting in a tidy output like:
Waiting...
NotThrown: (1.0e-3)
>>> +(0.0) >>> (0.0)+ >>> (1)
NotThrown: (2.0e-3)
>>> +(0.0) >>> (0.0)+ >>> (2)
[...]
Waiting...
NotThrown: (2.0009999999998906)
>>> +(0.0) >>> (0.0)+ >>> (2001)
Exception:
>>> +(3.9478417604357436e-3) >>> (0.0)+
>>> (2002)
[...]

The cell is initialised in a state where the exception hasn’t
been thrown yet, and the localTime is 1.0e-3 seconds. The
next line corresponds to the initial state (position and ve-
locity) of the sine generator which will be activated after
the exception has been thrown, followed by the internal
counter of printEverySecond. In the next step, local time
and counter have progressed. Two thousand steps later, the
exception is finally thrown, and the sine wave starts.

6.2 Testing with QuickCheck

Often, some cells in a live program should satisfy certain
correctness properties. It is good practice in Haskell to build
up a program from functions, and ensure their correctness
with property-based testing. QuickCheck [7] is the primeval
framework for this. It generates arbitrary input for a function,
and checks whether given assertions are valid.

Unit tests. In our live coding approach, programs are not
composed of mere functions, but of cells, and of course we
9This option is important for performance: E.g. for an audio application, a
side effect on every sample can slow down unbearably.

REBLS ’20, November 16, 2020, Virtual, USA Manuel Bärenz

wish to test them in a similar way before reloading. As
a simple example, we wish to assure that sumC will never
output negative numbers if only positive numbers are fed
into it. Our test cell is thus defined as:
testCell :: Monad m => Cell m (Positive Int) Bool
testCell

= arr getPositive >>> sumC >>> arr (>= 0)

We begin by running a cell repeatedly against a list of inputs,
collecting its outputs:
embed

:: Monad m
=> [a]
-> Cell m a b
-> m [b]

If the input type a can be generated arbitrarily, then so can a
list of as. After running the cell with all inputs, we form the
conjunction of all properties, with QuickCheck’s conjoin.
Effects in IO can be embedded in QuickCheck [8] with the
monad morphism run, and executed with monadicIO. Cob-
bling all those pieces together makes cells testable:
instance (Arbitrary a, Show a, Testable prop)

=> Testable (Cell IO a prop) where
property cell = property
$ \as -> monadicIO $ fmap conjoin
$ embed as $ hoistCell run cell

Let us execute our test:
> quickCheck testCell

+++ OK, passed 100 tests.

A large class of properties can be tested this way. We can
unit test all components of a new version of our live program
before reloading it. To go further, one could set up stateful
property-based testing [14] for the live coding environment.

Migration Tests. Even better, we can test before reloading
whether the newlymigrated statewould be valid. Given some
tests on intermediate values in the computation, we collect
all test properties in a Writer effect:
logTest

:: Monad m
=> Cell m a prop
-> Cell (WriterT [prop] m) a ()

logTest cell
= liftCell cell
>>> arrM (return >>> tell)

Now the tests can be included in the definition of the whole
live program without adding new outputs. When the pro-
gram is built, we can optionally test the properties:
liveCheck

:: Testable prop
=> Bool
-> LiveProgram (WriterT [prop] IO)
-> LiveProgram IO

liveCheck test = hoistLiveProgram performTests
where

performTests action = do
(s, props) <- runWriterT action
when test $ quickCheck $ conjoin props
return s

The function liveCheck True will run quickCheck on all
properties, while liveCheck False gives the “production”
version of our program, with tests disabled. We launch two
separate threads and run the test version in one of them and
the production version in the other. Always reloading into
the test version first, we can ensure that the migration will
create valid state before migrating the live system.

7 Conclusion
General purpose live coding can be simple and free from boil-
erplate. It is most naturally cast in the form of a Functional
Reactive Programming (FRP) framework, and conforms well
with the synchronous, arrowized paradigm in the tradition of
Yampa and Dunai. The state migration is type-safe, and type-
driven, in that it is derived generically from the datatype
definition. By parametrizing the cells over arbitrary monads,
and leveraging the exception monad, we can reason about
effects and separate data flow aspects from control flow. The
approach is extensible as debugging and testing methods
can be added easily.

Further Directions. To use the framework in any setting
beyond a toy application, wrappers have to be written that
explicitly integrate it in the external loops of existing frame-
works, such as web frontends and backends, OpenGL, gloss
[18], or audio libraries. As a start, the multi-clock FRP library
rhine [5] could be adapted to this approach.
The automatic migration only guarantees that the new

state will typecheck. However, if further properties beyond
the reach of Haskell’s type system are expected to hold for
the old state, those are not guaranteed for the new state.
Within Haskell, quickchecking is our only hope. An ex-
tension such as refinement types (see e.g. [29] about Liq-
uidHaskell) can automatically verify certain algebraic con-
straints, though. It would be a great enrichment to generalise
automatic migration to such a type system.
The author thanks Iván Pérez for his work on Yampa,

Dunai, and numerous other projects in the FRP world; the
reviewers of Haskell Symposium 2018 and REBLS 2020 for
very helpful comments that enriched and streamlined this
work; Paolo Capriotti for the initial idea that led to monadic
exception control flow; and the sonnen VPP team, especially
Fabian Linges, for helpful discussions about hot code swap
in Erlang.

The Essence of Live Coding: Change the Program, Keep the State! REBLS ’20, November 16, 2020, Virtual, USA

References
[1] Samson Abramsky, Esfandiar Haghverdi, and Philip Scott. 2002. Ge-

ometry of Interaction and Linear Combinatory Algebras. Mathe-
matical Structures in Computer Science 12 (10 2002), 625–665. https:
//doi.org/10.1017/S0960129502003730

[2] Heinrich Apfelmus. 2016. HyperHaskell. https://github.com/
HeinrichApfelmus/hyper-haskell.

[3] Heinrich Apfelmus. 2019. Functors and music. In Proceedings of the
7th ACM SIGPLAN International Workshop on Functional Art, Music,
Modeling, and Design. 52–55.

[4] Joe Armstrong. 2013. Programming Erlang: software for a concurrent
world. Pragmatic Bookshelf.

[5] Manuel Bärenz and Ivan Perez. 2018. Rhine: FRP with type-level clocks.
In Proceedings of the 11th International Symposium on Haskell. ACM,
145–157.

[6] Paul Caspi and Marc Pouzet. 1998. A Co-iterative Characterization of
Synchronous Stream Functions. InWorkshop on Coalgebraic Methods in
Computer Science (CMCS’98) (Electronic Notes in Theoretical Computer
Science), Vol. 11. Elsevier, Lisbon, Portugal, 1–21. https://doi.org/10.
1016/S1571-0661(04)00050-7

[7] Koen Claessen and John Hughes. 2000. QuickCheck: A Lightweight
Tool for Random Testing of Haskell Programs. In Proceedings of the
International Conference on Functional Programming (ICFP 2000). ACM.

[8] Koen Claessen and John Hughes. 2002.
Testing monadic code with QuickCheck.
http://www.cse.chalmers.se/ rjmh/Papers/QuickCheckST.ps. ACM
SIGPLAN Notices 37, 12 (2002), 47–59.

[9] Chris Done. 2014. foreign-store. https://github.com/esoeylemez/
foreign-store.

[10] Andy Gill and Ross Paterson. 2004. transformers.
https://hub.darcs.net/ross/transformers/.

[11] Gabriel Gonzalez. 2013. mmorph. https://github.com/Gabriel439/
Haskell-MMorph-Library.

[12] Tim Harris, Simon Marlow, and Simon Peyton Jones. 2005. Com-
posable memory transactions. In PPoPP ’05: Proceedings of the tenth
ACM SIGPLAN symposium on Principles and practice of parallel pro-
gramming (ppopp ’05: proceedings of the tenth acm sigplan sympo-
sium on principles and practice of parallel programming ed.). ACM
Press, 48–60. https://www.microsoft.com/en-us/research/publication/
composable-memory-transactions/

[13] Ichiro Hasuo and Bart Jacobs. 2011. Traces for coalgebraic components.
Mathematical Structures in Computer Science 21, 2 (2011), 267–320.
https://doi.org/10.1017/S0960129510000551

[14] Fred Hebert. 2019. Property-Based Testing with PropEr, Erlang, and
Elixir. Pragmatic Bookshelf.

[15] JohnHughes. 2000. Generalisingmonads to arrows. Science of computer
programming 37, 1-3 (2000), 67–111.

[16] Daniel Ingalls. 2020. The evolution of Smalltalk: from Smalltalk-72
through Squeak. Proceedings of the ACM on Programming Languages
4, HOPL (2020), 1–101.

[17] Mark P Jones. 1995. Functional programming with overloading and
higher-order polymorphism. In International School on Advanced Func-
tional Programming. Springer, 97–136.

[18] Ben Lippmeier. 2010. Gloss. https://github.com/benl23x5/gloss.
[19] Ralf Lämmel and Simon Peyton Jones. 2003. Scrap your boiler-

plate: a practical approach to generic programming. ACM Press, 26–
37. https://www.microsoft.com/en-us/research/publication/scrap-
your-boilerplate-a-practical-approach-to-generic-programming/

[20] Alex McLean. 2014. Making programming languages to dance to: live
coding with tidal. In Proceedings of the 2nd ACM SIGPLAN international
workshop on Functional art, music, modeling & design. ACM, 63–70.

[21] George H Mealy. 1955. A method for synthesizing sequential circuits.
The Bell System Technical Journal 34, 5 (1955), 1045–1079.

[22] Robin Milner. 1975. Processes: A Mathematical Model of Computing
Agents. In Logic Colloquium ’73, H.E. Rose and J.C. Shepherdson (Eds.).
Studies in Logic and the Foundations of Mathematics, Vol. 80. Elsevier,
157 – 173. https://doi.org/10.1016/S0049-237X(08)71948-7

[23] Neil Mitchell. 2014. ghcid. https://github.com/ndmitchell/ghcid/.
[24] Tom E. Murphy. 2016. A livecoding semantics for functional reactive

programming. In Proceedings of the 4th International Workshop on
Functional Art, Music, Modelling, and Design. 48–53.

[25] Henrik Nilsson, Antony Courtney, and John Peterson. 2002. Functional
Reactive Programming, Continued. In Proceedings of the 2002 ACM
SIGPLANWorkshop on Haskell (Pittsburgh, Pennsylvania) (Haskell ’02).
ACM, 51–64.

[26] Ross Paterson. 2001. A new notation for arrows. In ACM SIGPLAN
Notices, Vol. 36. ACM, 229–240.

[27] Ivan Perez, Manuel Bärenz, and Henrik Nilsson. 2016. Functional Re-
active Programming, Refactored. In Proceedings of the 9th International
Symposium on Haskell (Nara, Japan) (Haskell 2016). ACM, 33–44.

[28] Maciej Piróg and Jeremy Gibbons. 2014. The coinductive resumption
monad. Electronic notes in theoretical computer science 308 (2014),
273–288.

[29] Niki Vazou, Eric L Seidel, Ranjit Jhala, Dimitrios Vytiniotis, and Simon
Peyton-Jones. 2014. Refinement types for Haskell. In ACM SIGPLAN
Notices, Vol. 49. ACM, 269–282.

[30] Philip Wadler. 1989. Theorems for free!. In FPCA, Vol. 89. 347–359.
[31] Scott Wilson, David Cottle, and Nick Collins. 2011. The SuperCollider

Book. The MIT Press.
[32] Daniel Winograd-Cort and Paul Hudak. 2014. Settable and non-

interfering signal functions for FRP: how a first-order switch is more
than enough. ACM SIGPLAN Notices 49, 9 (2014), 213–225.

[33] Kazu Yamamoto, Michael Snoyman, and Andreas Voellmy. [n.d.]. Warp.
http://www.aosabook.org/en/posa/warp.html. In The Performance of
Open Source Applications.

https://doi.org/10.1017/S0960129502003730
https://doi.org/10.1017/S0960129502003730
https://github.com/HeinrichApfelmus/hyper-haskell
https://github.com/HeinrichApfelmus/hyper-haskell
https://doi.org/10.1016/S1571-0661(04)00050-7
https://doi.org/10.1016/S1571-0661(04)00050-7
https://github.com/esoeylemez/foreign-store
https://github.com/esoeylemez/foreign-store
https://github.com/Gabriel439/Haskell-MMorph-Library
https://github.com/Gabriel439/Haskell-MMorph-Library
https://www.microsoft.com/en-us/research/publication/composable-memory-transactions/
https://www.microsoft.com/en-us/research/publication/composable-memory-transactions/
https://doi.org/10.1017/S0960129510000551
https://github.com/benl23x5/gloss
https://www.microsoft.com/en-us/research/publication/scrap-your-boilerplate-a-practical-approach-to-generic-programming/
https://www.microsoft.com/en-us/research/publication/scrap-your-boilerplate-a-practical-approach-to-generic-programming/
https://doi.org/10.1016/S0049-237X(08)71948-7
https://github.com/ndmitchell/ghcid/
http://www.aosabook.org/en/posa/warp.html

	Abstract
	1 Introduction
	2 Change the program. Keep the state (as far as possible).
	2.1 Migrating the State
	2.2 Type-Driven Migrations

	3 The Runtime
	3.1 Hands on Interaction
	3.2 Live Coding a Webserver

	4 Live Coding as Arrowized Functional Reactive Programming
	4.1 Cells
	4.2 FRP for Automata-Based Programming
	4.3 A Sine Generator

	5 Control Flow
	5.1 Exceptions
	5.2 Control Flow Context
	5.3 Exceptions Forever

	6 Tooling
	6.1 Debugging the Live State
	6.2 Testing with QuickCheck

	7 Conclusion
	References

