
The essence of live coding
Change the program, keep the state!

Manuel Bärenz
Abstract
I present a general-purpose and type safe live coding frame-
work in Haskell. The internal state of the live program is
automatically migrated when performing hot code swap.
The approach is then generalised to an easy to use FRP inter-
face. It is parametrized by its side effects, separates data flow
cleanly from control flow, and allows to develop live pro-
grams from reusable, modular components. Useful utilities
for debugging and quickchecking are presented.

1 Introduction
For our purposes, a live coding framework has to allow a
program to be updated, recompiled and reloaded, without
interrupting its execution. The essential idea can be summed
up in the motto of live coding:

Change the program. Keep the state.

In a dynamically typed language like Erlang [1], this is con-
ceptually simple, but error-prone and tedious: There is no
guarantee that the current state of the old program is com-
patible with the new program. Usually, one has to manually
migrate the state to a new schema, but one cannot rule out
failure. In webserver applications, the risk of runtime er-
rors from incorrect state migrations may well outweigh the
benefits.
The solution to avoid runtime errors is to employ a type

checker. What is more, we will see how it is possible to arrive
at an automatic migration function: By generic, type-driven
programming.
Typed, automatically migrating live coding frameworks

already exist [9], even for Haskell [7], but they are typically
restricted to a particular domain such as audio or video. Here,
an effect-polymorphic, universal live coding framework is
developed. By being parametrised over arbitrary monads, it
can connect to many backends and external libraries. Con-
sequentially, the framework can be used in virtually any
domain were live coding makes sense.
From an API perspective, Essence Of Livecoding follows

the arrowized Functional Reactive Programming (FRP) view-
point, in particular Dunai [8] and Rhine [2]. For the library
user, this is essential in order to build programs modularly
from reusable components, and to separate data flow from
control flow. It is also essential from an implementation
perspective, for two corresponding purposes: To build up
state types modularly which greatly facilitates automatic
and generic state migration, and to be able to migrate the

Figure 1. Example with Gloss and PulseAudio

data LiveProgram m = forall s . Data s
=> LiveProgram
{ liveState :: s
, liveStep :: s -> m s
}

Figure 2. Definition of live programs

control state1 (the information which branch of the program
is currently active).
In the demonstration, I show in more detail how to live

code a gloss program, and add or remove certain features
from it. This program is then linked to a simple sound syn-
thesizer using the PulseAudio backend.
The talk slides and a full article version are available at

https://www.manuelbaerenz.de/. The source repository con-
taining the library and examples (console, audio, video, web
servers) is available at https://github.com/turion/essence-of-
live-coding.

2 Change the program. Keep the state (as
far as possible).

Our model of a live program consists of a state and an ef-
fectful state transition (“step”) function, shown in Figure 2.
The semantics of a live program is given by the side effects
resulting from repeatedly applying liveStep to its current
state, which is initialised with liveState. We hide the state
type from the type signature by making it existential, since it
will typically change over the course of a live coding session.

1A hard problem according to https://elm-lang.org/blog/interactive-
programming.

https://www.manuelbaerenz.de/
https://github.com/turion/essence-of-live-coding
https://github.com/turion/essence-of-live-coding
https://elm-lang.org/blog/interactive-programming
https://elm-lang.org/blog/interactive-programming


Manuel Bärenz

The Data constraint will later be the crucial ingredient for a
generic state migration function.
A live coding session is started via GHCi, into which we

load a file containing a live program. We store it in an MVar
and launch a separate thread that steps the state repeatedly
and stores it in the MVar again. When we have edited the file,
we reload it from GHCi, making use of the foreign-store
[4] package to persist the concurrent variable. Now, we
would like to update the state transition function liveStep
in the live program, while keeping the current state, as far as
possible. Here lies the fundamental challenge of live coding:
The new program does not match the old state type.

The key insight is that we can use the datatype defini-
tion of the state to generically derive the correct migration.
Assume, for example, that the state of some webserver is
defined as:
data State = State { nVisitors :: Int }

And after reloading, a new record field was added:
data State = State

{ nVisitors :: Int
, lastAccess :: UTCTime
}

Clearly, when migrating the old state to the new datatype,
we want to preserve the nVisitors field. For lastAccess
on the other hand, we cannot compute any sensible value.
and thus have to initialise this field from the initial state of
the new program. By reasoning about record fields and their
types, we were able to find the best state migration. Similar
generic criteria include matching constructor names, match-
ing builtin types, and automatic newtype wrapping. All of
these can be implemented in less than 100 lines using the
Data type class from [6], as a function of this type signature:
migrate :: (Data a, Data b) => a -> b -> a

It receives the new initial state and the old current state,
and tries to migrate the old state as far as possible to the
new state type. Wherever the automatic migration would
perform suboptimally – as were the case if we wanted to
migrate nVisitors from Int to Integer – it is possible to
extend by a special case provided by the user.

3 Live coding as arrowized FRP
Writing out the complete state of the live program explicitly
and separating its state from the step function is tedious. In-
stead, we want to develop modularly, and an arrowized FRP
interface will allow us to do so. The live program definition
is generalized to “cells”2, shown in Figure 3. Additionally to
a state and a step function, cells also have an input type a
and an output type b. They can be composed sequentially,
by feeding the output of one cell as input into another cell.
By being instances of the Arrow type class, they can also be

2Cells are the building blocks of everything live.

data Cell m a b = forall s . Data s => Cell
{ cellState :: s
, cellStep :: s -> a -> m (b, s)
}

Figure 3. The definition of a live coding cell

composed in parallel, giving rise to clear data flow declara-
tions through the arrow syntax extension. The migration
function has special cases for the state types of composed
cells, making FRP cells suitable for live coding.
As a simple example, consider the following Cell which

adds all input and returns the delayed sum each step:
sumC :: (Monad m, Num a, Data a) => Cell m a a
sumC = Cell { .. } where
cellState = 0
cellStep accum a = return (accum, accum + a)

Cells may also create side effects in a monad. A cell of type
Cell IO () a produces data, using the IO monad, while
Cell IO a () consumes data. Composing effectful data pro-
ducers with data processing cells, and finally with effectful
consumers, we recover live programs as the special case of
trivial input and output.

Using the ExceptT monad transformer, we also provide a
monadic control flow interface based on type-safe exceptions.
It enables the library user to permanently switch from one
cell to another, triggered by events thrown anywhere within
the cell. The crucial advantage of embedding control flow
into cell states as an effect is that the migration function
preserves the current control flow state (e.g., the information
to which cell we currently switched) out of the box.

4 Tooling
For ease of use, custom GHCi commands are supplied that
start a live program in a separate thread and allow reload it
when it is edited. These cover ordinary live programs in IO,
but also video and audio backends. Utilities for integration
with other external loops are given.

It is easy to add debugging functionality to the framework,
e.g. displaying the state or changing it after interacting with
the user. In short, a debugger is itself a live program that can,
as an effect, read and modify the state of an arbitrary other
live program, i.e. it is of this type:
forall s . Data s => LiveProgram (StateT s m)

As examples, there are debuggers printing the current state
to the console, displaying it graphically via gloss [5], or
pausing the execution upon user interaction.
Testing live programs or cells with arbitrary input using

QuickCheck [3] before reloading is often sensible. By col-
lecting test results of components in a writer monad, we can
modularly check properties of intermediate data. Thanks to
the Data constraint, cells and live programs can be tested by
generating arbitrary state.



The essence of live coding

References
[1] Joe Armstrong. 2013. Programming Erlang: software for a concurrent

world. Pragmatic Bookshelf.
[2] Manuel Bärenz and Ivan Perez. 2018. Rhine: FRP with type-level clocks.

In Proceedings of the 11th International Symposium on Haskell. ACM,
145–157.

[3] Koen Claessen and John Hughes. 2000. QuickCheck: A Lightweight
Tool for Random Testing of Haskell Programs. In Proceedings of the
International Conference on Functional Programming (ICFP 2000). ACM.

[4] Chris Done. 2014. foreign-store. https://github.com/esoeylemez/
foreign-store.

[5] Ben Lippmeier. 2010. Gloss. https://github.com/benl23x5/gloss.
[6] Ralf Lämmel and Simon Peyton Jones. 2003. Scrap your boil-

erplate: a practical approach to generic programming. ACM
Press, 26–37. https://www.microsoft.com/en-us/research/publication/
scrap-your-boilerplate-a-practical-approach-to-generic-programming/

[7] Alex McLean. 2014. Making programming languages to dance to: live
coding with tidal. In Proceedings of the 2nd ACM SIGPLAN international
workshop on Functional art, music, modeling & design. ACM, 63–70.

[8] Ivan Perez, Manuel Bärenz, and Henrik Nilsson. 2016. Functional Reac-
tive Programming, Refactored. In Proceedings of the 9th International
Symposium on Haskell (Haskell 2016). ACM, 33–44.

[9] Scott Wilson, David Cottle, and Nick Collins. 2011. The SuperCollider
Book. The MIT Press.

https://github.com/esoeylemez/foreign-store
https://github.com/esoeylemez/foreign-store
https://github.com/benl23x5/gloss
https://www.microsoft.com/en-us/research/publication/scrap-your-boilerplate-a-practical-approach-to-generic-programming/
https://www.microsoft.com/en-us/research/publication/scrap-your-boilerplate-a-practical-approach-to-generic-programming/

	Abstract
	1 Introduction
	2 Change the program. Keep the state (as far as possible).
	3 Live coding as arrowized FRP
	4 Tooling
	References

