Abstract
This file supplies more detailed discussions, such as the somewhat technical derivations of the Applicative and Monad type classes. It is not necessary to read it in order to appreciate the main paper, but some readers may want to satisfy their curiosity.

ACM Reference Format:

1 Arrows and typeclasses
The Arrow type class also allows for data-parallel composition:

\[(***) : Monad \rightarrow \text{Cell} m a b \rightarrow \text{Cell} m c d \rightarrow \text{Cell} m (a, c) (b, d)\]

As for \(\triangleright\triangleright\triangleright\), the state type of the composed cell is the product type of the constituent states. In the resulting cell cell1 *** cell2, two inputs are received. First, cell1 is stepped with the input \(a\), then cell2 is stepped with \(b\).

The parallel composition operator has a dual, supplied by the ArrowChoice type class, which Cells implement:

\[(+++) : Monad \rightarrow \text{Cell} m a b \rightarrow \text{Cell} m c d \rightarrow \text{Cell} m (\text{Either} a c) (\text{Either} b d)\]

Like cell1 *** cell2, its dual cell1 +++ cell2 holds the state of both cells. But while the former executes both cells, and consumes input and produces output for both of them, the latter steps only one of them forward each time, depending on which input was provided. This enables basic control flow in arrow expressions, such as if- and case-statements. We can momentarily switch from one cell to another, depending on live input. For example, the following two cells are equal:

\[
\text{cellLR} = \text{proc \(lr\) -> do }
\text{case \(lr\) of }
\text{Left () -> returnA \(<\text{"Left!"}\)}
\text{Right () -> returnA \(<\text{"Right!"}\)}
\]

\[
\text{cellLR'} = \text{arr (const \"Left!\") +++ arr (const \"Right!\")}
\]

The ArrowLoop class exists to enable recursive definitions in arrow expressions, and once again Cells implement it:

\[
\text{loop} : MonadFix \rightarrow \text{Cell} m (a, s) (b, s) \rightarrow \text{Cell} m a b
\]

A word of caution has to be issued here: The instance is implemented using the monadic fixed point operator mfix [1], and can thus crash at runtime if the current output of the intermediate value \(s\) is calculated strictly from the current input \(s\).

We would like to have all basic primitives needed to develop standard synchronous signal processing components, without touching the Cell constructor anymore. One crucial bit is missing to achieve this goal: Encapsulating state. The most general such construction is the feedback loop:

\[
\text{feedback} : (\text{Monad m}, \text{Data } s) \rightarrow \text{Cell} m (a, s) (b, s) \rightarrow \text{Cell} m a b
\]

Let us have a look at its internal state:

\[
\text{data Feedback sPrevious sAdditional = Feedback }
\{ \text{sPrevious :: sPrevious , sAdditional :: sAdditional} \}
\text{deriving Data}
\]

In feedback sAdditional cell, the cell has state sPrevious, and to this state we add sAdditional. The additional state is received by cell as explicit input, and feedback hides it.
Note that feedback and loop are different. While loop provides immediate recursion, it doesn’t add new state. feedback requires an initial state and delays it, but in turn it is always safe to use since it does not use mfix.

It enables us to write delays:

```haskell
delay :: (Monad m, Monad m) => s -> Cell m s s
delay s = feedback s $ \arr \swap
    where
        \swap (sNew, sOld) = (sOld, sNew)
```

feedback can be used for accumulation of data. For example, sumFeedback now becomes:

```haskell
sumFeedback :: (Monad m, Num a, Data a) => Cell m a a
sumFeedback = feedback 0 $ arr \swap
    \((a, accum) \rightarrow (accum, a + accum))
```

2 Monadic stream functions and final coalgebras

Cells mimic Dunai’s [3] monadic stream functions (MSFs) closely. But can they fill their footsteps completely in terms of expressiveness? If not, which programs exactly can be represented as MSFs and which can’t? To find the answer to these questions, let us reexamine both types.

With the help of a simple type synonym, the MSF definition can be recast in explicit fixpoint form:

```haskell
type StateTransition m a b s = a -> m (b, s)
```

```haskell
data MSF m a b = MSF
    \{ unMSF :: StateTransition m a b (MSF m a b) \}
```

This definition tells us that monadic stream functions are so-called final coalgebras of the StateTransition functor (for fixed m, a, and b). An ordinary coalgebra for this functor is given by some type s and a coalgebra structure map:

```haskell
data Coalg m a b where
    Coalg
        :: s
        -> (s -> StateTransition m a b s)
        -> Coalg m a b
```

But hold on, the astute reader will intercept, is this not simply the definition of Cell? Alas, it is not, for it lacks the type class restriction Data s, which we need so dearly for the type migration. Any cell is a coalgebra, but only those coalgebras that satisfy this type class are a cell.

Oh, if only there were no such distinction. By the very property of the final coalgebra, we can embed every coalgebra therein:

```haskell
finality :: Monad m => Coalg m a b -> MSF m a b
finality (Coalg state step) = MSF $ \a \rightarrow do
    (b, state') <- step state a
    return (b, finality $ Coalg state' step)
```

And analogously, every cell can be easily made into an MSF without loss of information:

```haskell
finalityC :: Monad m => Cell m a b -> MSF m a b
finalityC Cell (\. \) = MSF $ \a \rightarrow do
    (b, cellState') <- cellStep cellState a
    return (b, finalityC $ Cell cellState' cellStep)
```

And the final coalgebra is of course a mere coalgebra itself:

```haskell
coalgebra :: MSF m a b -> Coalg m a b
coalgebra msf = Coalg m a b
```

We are out of luck if we would want to derive an instance of Data (MSF m a b). Monadic stream functions are, well, functions, and therefore have no Data instance. The price of Data is loss of higher-order state. Just how big this loss is will be demonstrated in the following section.

We would like to adopt this approach here, but we are forewarned: Cells are slightly less expressive than Dunai’s stream functions, due to the Data constraint on the internal state.

3 Monads for control flow

Recall the definition of CellExcept from the main article. The goal is to define a Monad instance for it.

An existential crisis

After having done away with return already, we want to implement the holy grail of Haskell, bind:

```haskell
(\Rightarrow\) :: Monad m => m a b e1
    \rightarrow (e1 \rightarrow CellExcept m a b e2)
    \rightarrow CellExcept m a b e2
```

Unwrapped from the newtype, it would have a type signature like this:

```haskell
bindCell :: Monad m => m a b e1
    \rightarrow (e1 \rightarrow Cell (ExceptT e2 m) a b)
    \rightarrow Cell (ExceptT e2 m) a b
```

Its intended semantics is straightforward: Execute the first cell until it throws an exception, then use this exception to choose the second cell, which is to be executed subsequently.

But what is the state type of the result? When implementing cell ‘bindCell’ handler, we would need to specify some type of internal state. Before the exception is thrown, this should certainly be the state of cell, but what afterwards? Worse, the state type of handler e1 depends on the
value of the exception \(e_1 \)! Without having ordered them, dependent types suddenly jump in our faces, in the disguise of existential quantification.\(^1\) Impulsively, we want to shove the existential state type back where it came from. Why not simply store \(\text{handler } e_1 \) as state once the exception \(e_1 \) was thrown, and use the aptly named \text{step} from Section 2 in the main article as step function? (This is basically the final encoding from Section 2, and exactly how Dunai implements this feature.) But it is not possible, because \text{Cells} are not \text{Data}.

\textbf{Live bind} Accepting a setback, but not final defeat, we note that the fundamental issue is the inability to typecheck the state of the cell we would like to switch to, at least not if this cell has to depend on the thrown exception.

If we were able to offer the typechecker a state type immediately, and defer the actual choice to a later moment, we can succeed. What if we were to supply the thrown exception not when instantiating the new cell, but while it is running, as a live input?

This is exactly what \text{live bind} does:

\[
\text{Cell} \quad \text{bind} \\
:: (\text{Data } e_1, \text{Monad } m) \\
\Rightarrow \text{Cell } (\text{ExceptT } e_1 \ m) \ a \ b \\
\Rightarrow \text{Cell } (\text{ExceptT } e_2 \ m) (e_1, a) \ b \\
\Rightarrow \text{Cell } (\text{ExceptT } e_2 \ m) \ a \ b
\]

Its syntax is a combination of the monadic bind \(>>= \) and the sequential composition operator \(>>\). Its semantics is described as follows: Before an exception is thrown, it is initialised with the initial state of both cells. If no exception occurs, only the state of the first cell is stepped. As soon as an exception is thrown, the state is switched to containing just the exception and the state of the second cell. The first cell is discarded, all information in it relevant to the rest of the live program must be passed into the exception. The thrown exception \(e_1 \) is passed as an additional input to the second cell, which is then executed indefinitely. The resulting cell may throw an exception of its own, which can in turn be handled again. The state of `\text{cell1 >>=} \text{cell2}` not only holds the state of the individual cells, but also the control flow state, that is, it designates which cell currently has control.

\textbf{Applying it to \text{Applicative}} If we are allowed to read the first exception during the execution of the second cell, we can simply re-raise it once the second exception is thrown:

\[
\text{andThen} \\
:: (\text{Data } e_1, \text{Monad } m) \\
\Rightarrow \text{Cell } (\text{ExceptT } e_1 \ m) \ a \ b \\
\Rightarrow \text{Cell } (\text{ExceptT } e_2 \ m) \ a \ b
\]

\(^1\)Unfortunately, we cannot achieve the goal by reverting to the preliminary definition of live programs, which did not make the state type existential. The corresponding \text{Cell} definition would not be an instance of \text{Arrow} anymore, and the type signatures would bloat indefinitely. But worst of all, \text{bindCell} would restrict the state of all cells the handler could output to the same type! Except in very simple cases, we could not branch between different cells at all.

\[
\text{- Cell } (\text{ExceptT } (e_1, e_2) \ m) \ a \ b \\
\text{cell1 `andThen` Cell } \{ .. \} = \text{cell1} \gggg \text{Cell} \\
\{ \\
\text{cellStep } = \text{\textit{\text{\text{	extbackslash state}}}(e_1, a) \Rightarrow} \\
\text{withExceptT}(e_1,) \ggg \text{cellStep} \text{ state } a, .. \\
\}
\]

Given two \text{Cells}, the first may throw an exception, upon which the second cell gains control. As soon as it throws a second exception, both exceptions are thrown as a tuple.

At this point, we unfortunately have to give up the efficient \text{newtype}. The spoilsport is, again the type class \text{Data}, to which the exception type \(e_1 \) is subjected (since the exception must be stored during the execution of the second cell). But the issue is minor, it is fixed by defining the \text{free functor}, or Co-Yoneda construction:

\[
\text{data CellExcept } m \ a \ b \ e = \forall \text{all } e' . \\
\text{Data } e' \Rightarrow \text{CellExcept} \\
\{ \text{fmapExcept } :: e' \rightarrow e \\
, \text{cellExcept } :: \text{Cell } (\text{ExceptT } e' \ m) \ a \ b \}
\]

While ensuring that we only store cells with exceptions that can be \textit{bound}, we do not restrict the parameter type \(e \).

It is known that this construction gives rise to a \text{Functor} instance for free:

\[
\text{instance Functor } (\text{CellExcept } m \ a \ b) \text{ where } \\
\text{fmap } f \text{ CellExcept } \{ .. \} = \text{CellExcept} \\
\{ \text{fmapExcept } = f \cdot \text{fmapExcept} \\
, .. \\
\}
\]

The \text{Applicative} instance arises from the work we have done so far. \textit{pure} is implemented by throwing a unit and transforming it to the required exception, while sequential application is a bookkeeping exercise around the previously defined function \text{andThen}:

\[
\text{instance Monad } m \\
\Rightarrow \text{Applicative } (\text{CellExcept } m \ a \ b) \text{ where } \\
\text{pure } e = \text{CellExcept} \\
\{ \text{fmapExcept } = \text{const } e \\
, \text{cellExcept } = \text{constM} \ggg \text{throwE } () \}
\]

\[
\text{CellExcept } \text{fmap1} \text{ cell1 } \Geq \text{CellExcept } \{ .. \} \\
\text{CellExcept } \text{fmap2} \text{ cell2 } = \text{CellExcept } \{ .. \} \text{ where } \\
\text{fmapExcept } (e_1, e_2) = \text{fmap1 } e_1 \\
\$ \text{fmap2 } e_2 \\
\text{cellExcept } = \text{cell1 `andThen` cell2}
\]

\subsection{Finite patience with monads} While \text{Applicative} control flow is certainly appreciated, and the live bind combinator \(>>= \) is even more expressive, it still encourages boilerplate code like the following:
The annoyed library user will promptly abbreviate this pattern:

```haskell
bindBool :: Monad m => Cell (ExceptT Bool m) a b
       -> (Bool -> Cell (ExceptT e m) a b)
       -> Cell (ExceptT e m) a b
bindBool cell handler
  = cell >>>= proc (bool, a) -> do
      if bool
      then handler True  <- a
      else handler False <- a
```

But, behold! Up to the `CellExcept` wrapper, we have just implemented bind, the holy grail which we assumed to be denied! The bound type is restricted to `Bool`, admitted, but if it is possible to bind `Bool` then it is certainly possible to bind `(Bool, Bool)`, by nesting two `if`-statements. By the same logic, we can bind `(Bool, Bool, Bool)` and so on (of course any isomorphic type as well). In fact, *any finite type* can be bound in principle, by embedding it in such a binary vector. For what follows, we will only consider finite algebraic datatypes. These are essentially the unit type (or any single constructor type), sum types (or multiple constructor types) of other finite types, and product types (or multiple argument constructors). Recursive datatypes are infinite in Haskell (consider, e.g., the list type).

How can it be that a general bind function does not type-check, but we can implement one for any finite type? If the exception type `e` is finite, the type checker can inspect the state type of the cell handler `e` for every possible exception value, at *compile time*. All that is needed is a little help to spell out all the possible cases, as has been done for `Bool`.

But certainly, we don’t want to write out all possible values of a type before we can bind it. Again, the Haskellers’ aversion to boilerplate has created a solution that can be tailored to our needs: Generic deriving [2]. We simply need to implement a bind function for generic sum types and product types, then this function can be abstracted into a type class, and GHC can infer a default instance for every algebraic data type by adding a single line of boilerplate. Since the type class is defined for all finite algebraic datatypes, we will call it `Finite`. Any user-contributed or standard type can be an instance this type class, given that it is not recursive.

It is possible to restrict the previous `CellExcept` definition by the typeclass:

```haskell
data CellExcept m a b e = forall e' .
  (Data e', Finite e') => CellExcept
  { fmapExcept :: e' -> e
```

Implementing the individual bind functions for sums and products, and finally writing down the complete `Monad` instance is a tedious exercise in Generic deriving.

We can save on boiler plate by dropping the Coyoneda embedding for an “operational” monad:

```haskell
data CellExcept m a b e where
  Return :: e -> CellExcept m a b e
  Bind
    :: CellExcept m a b e1
    -> (e1 -> CellExcept m a b e2)
    -> CellExcept m a b e2
  Try
    :: (Data e, Finite e)
    => Cell (ExceptT e m) a b
    -> CellExcept m a b e
```

The `Monad` instance is now trivial:

```haskell
instance Monad m => Monad (CellExcept m a b) where
  return = Return
  (>>=) = Bind
```

As is typical for operational monads, all of the effort now goes into the interpretation function:

```haskell
runCellExcept :: Monad m
              => CellExcept m a b e
              -> CellExcept m a b e
runCellExcept (Bind (Try cell) g)
  = cell >>= commute (runCellExcept . g)
runCellExcept ... = ...
```

As a slight restriction of the framework, throwing exceptions is now only allowed for finite types:

```haskell
try
  :: (Data e, Finite e)
  => Cell (ExceptT e m) a b
  -> CellExcept m a b e
try = Try
```

In practice however, this is less often a limitation than first assumed, since in the monad context, calculations with all types are allowed again.

References