
The essence of live coding: Change the program, keep
the state!
Appendix

Abstract
This file supplies more detailed discussions, such as the some-
what technical derivations of the Applicative and Monad
type classes. It is not necessary to read it in order to appre-
ciate the main paper, but some readers may want to satisfy
their curiosity.
ACM Reference Format:
. 2020. The essence of live coding: Change the program, keep
the state!: Appendix. In Proceedings of ACM Conference (Confer-
ence’17). ACM, New York, NY, USA, 4 pages. https://doi.org/10.
1145/nnnnnnn.nnnnnnn

1 Arrows and typeclasses
The Arrow type class also allows for data-parallel composi-
tion:
(***)

:: Monad m
=> Cell m a b
-> Cell m c d
-> Cell m (a, c) (b, d)

As for (>>>), the state type of the composed cell is the
product type of the constituent states. In the resulting cell
cell1 *** cell2, two inputs are received. First, cell1 is
stepped with the input a, then cell2 is stepped with b.

The parallel composition operator has a dual, supplied by
the ArrowChoice type class, which Cells implement:
(+++)

:: Monad m
=> Cell m a b
-> Cell m c d
-> Cell m (Either a c) (Either b d)

Like cell1 *** cell2, its dual cell1 +++ cell2 holds the
state of both cells. But while the former executes both cells,
and consumes input and produces output for both of them,
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
Conference’17, July 2017, Washington, DC, USA
© 2020 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

the latter steps only one of them forward each time, depend-
ing on which input was provided. This enables basic control
flow in arrow expressions, such as if- and case-statements.
We can momentarily switch from one cell to another, de-
pending on live input. For example, the following two cells
are equal:
cellLR = proc lr -> do

case lr of
Left () -> returnA -< "Left!"
Right () -> returnA -< "Right!"

cellLR'
= arr (const "Left!")
+++ arr (const "Right!")

The ArrowLoop class exists to enable recursive definitions
in arrow expressions, and once again Cells implement it:
loop

:: MonadFix m
=> Cell m (a, s) (b, s)
-> Cell m a b

A word of caution has to be issued here: The instance is
implemented using the monadic fixed point operator mfix
[1], and can thus crash at runtime if the current output of the
intermediate value s is calculated strictly from the current
input s.
We would like to have all basic primitives needed to de-

velop standard synchronous signal processing components,
without touching the Cell constructor anymore. One crucial
bit is missing to achieve this goal: Encapsulating state. The
most general such construction is the feedback loop:
feedback

:: (Monad m, Data s)
=> s
-> Cell m (a, s) (b, s)
-> Cell m a b

Let us have a look at its internal state:
data Feedback sPrevious sAdditional = Feedback
{ sPrevious :: sPrevious
, sAdditional :: sAdditional
} deriving Data

In feedback sAdditional cell, the cell has state sPrevious,
and to this state we add sAdditional. The additional state
is received by cell as explicit input, and feedback hides it.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Conference’17, July 2017, Washington, DC, USA

Note that feedback and loop are different. While loop
provides immediate recursion, it doesn’t add new state. feedback
requires an initial state and delays it, but in turn it is always
safe to use since it does not use mfix.

It enables us to write delays:
delay :: (Data s, Monad m) => s -> Cell m s s
delay s = feedback s $ arr swap
where
swap (sNew, sOld) = (sOld, sNew)

feedback can be used for accumulation of data. For example,
sumC now becomes:
sumFeedback

:: (Monad m, Num a, Data a)
=> Cell m a a

sumFeedback = feedback 0 $ arr
$ \(a, accum) -> (accum, a + accum)

2 Monadic stream functions and final
coalgebras

Cells mimick Dunai’s [3] monadic stream functions (MSFs)
closely. But can they fill their footsteps completely in terms
of expressiveness? If not, which programs exactly can be
represented as MSFs and which can’t? To find the answer to
these questions, let us reexamine both types.

With the help of a simple type synonym, the MSF definition
can be recast in explicit fixpoint form:
type StateTransition m a b s = a -> m (b, s)

data MSF m a b = MSF
{ unMSF :: StateTransition m a b (MSF m a b)
}

This definition tells us that monadic stream functions are
so-called final coalgebras of the StateTransition functor
(for fixed m, a, and b). An ordinary coalgebra for this functor
is given by some type s and a coalgebra structure map:
data Coalg m a b where
Coalg
:: s
-> (s -> StateTransition m a b s)
-> Coalg m a b

But hold on, the astute reader will intercept, is this not simply
the definition of Cell? Alas, it is not, for it lacks the type
class restriction Data s, whichwe need so dearly for the type
migration. Any cell is a coalgebra, but only those coalgebras
that satisfy this type class are a cell.
Oh, if only there were no such distinction. By the very

property of the final coalgebra, we can embed every coalge-
bra therein:
finality :: Monad m => Coalg m a b -> MSF m a b
finality (Coalg state step) = MSF $ \a -> do

(b, state') <- step state a
return (b, finality $ Coalg state' step)

And analogously, every cell can be easily made into an MSF
without loss of information:
finalityC :: Monad m => Cell m a b -> MSF m a b
finalityC Cell { .. } = MSF $ \a -> do

(b, cellState') <- cellStep cellState a
return (b, finalityC $ Cell cellState' cellStep)

And the final coalgebra is of course a mere coalgebra itself:
coalgebra :: MSF m a b -> Coalg m a b
coalgebra msf = Coalg msf unMSF

But we miss the abilty to encode MSFs as Cells by just the
Data type class:
coalgebraC

:: Data (MSF m a b)
=> MSF m a b
-> Cell m a b

coalgebraC msf = Cell msf unMSF

We are out of luck if we would want to derive an instance
of Data (MSF m a b). Monadic stream functions are, well,
functions, and therefore have no Data instance. The price of
Data is loss of higher-order state. Just how big this loss is
will be demonstrated in the following section.

We would like to adopt this approach here, but we are
forewarned: Cells are slightly less expressive than Dunai’s
stream functions, due to the Data constraint on the internal
state.

3 Monads for control flow
Recall the definition of CellExcept from the main article.
The goal is to define a Monad instance for it.

An existential crisis After having done awaywith return
already, we want to implement the holy grail of Haskell, bind:
(>>=)

:: Monad m
=> CellExcept m a b e1
-> (e1 -> CellExcept m a b e2)
-> CellExcept m a b e2

Unwrapped from the newtype, it would have a type signature
like this:
bindCell

:: Monad m
=> Cell (ExceptT e1 m) a b
-> (e1 -> Cell (ExceptT e2 m) a b)
-> Cell (ExceptT e2 m) a b

Its intended semantics is straightforward: Execute the first
cell until it throws an exception, then use this exception to
choose the second cell, which is to be executed subsequently.

But what is the state type of the result? When implement-
ing cell `bindCell` handler, we would need to specify
some type of internal state. Before the exception is thrown,
this should certainly be the state of cell, but what after-
wards? Worse, the state type of handler e1 depends on the

The essence of live coding: Change the program, keep the state! Conference’17, July 2017, Washington, DC, USA

value of the exception e1! Without having ordered them,
dependent types suddenly jump in our faces, in the disguise
of existential quantification.1 Impulsively, we want to shove
the existential state type back where it came from. Why not
simply store handler e1 as state once the exception e1 was
thrown, and use the aptly named step from Section 2 in
the main article as step function? (This is basically the final
encoding from Section 2, and exactly how Dunai implements
this feature.) But it is not possible, because Cells are not
Data.

Live bind Accepting a setback, but not final defeat, we note
that the fundamental issue is the inability to typecheck the
state of the cell we would like to switch to, at least not if this
cell has to depend on the thrown exception.

If we were able to offer the typechecker a state type imme-
diately, and defer the actual choice to a later moment, we can
succeed. What if we were to supply the thrown exception
not when instantiating the new cell, but while it is running,
as a live input?

This is exactly what live bind does:
(>>>=) :: (Data e1, Monad m)

=> Cell (ExceptT e1 m) a b
-> Cell (ExceptT e2 m) (e1, a) b
-> Cell (ExceptT e2 m) a b

Its syntax is a combination of the monadic bind >>= and
the sequential composition operator >>>. Its semantics is
described as follows: Before an exception is thrown, it is
initialised with the initial state of both cells. If no exception
occurs, only the state of the first cell is stepped. As soon as
an exception is thrown, the state is switched to containing
just the exception and the state of the second cell. The first
cell is discarded, all information in it relevant to the rest
of the live program must be passed into the exception. The
thrown exception e1 is passed as an additional input to the
second cell, which is then executed indefinitely. The resulting
cell may throw an exception of its own, which can in turn
be handled again. The state of cell1 >>>= cell2 not only
holds the state of the individual cells, but also the control flow
state, that is, it designates which cell currently has control.

Applying it to Applicative If we are allowed to read the
first exception during the execution of the second cell, we
can simply re-raise it once the second exception is thrown:
andThen

:: (Data e1, Monad m)
=> Cell (ExceptT e1 m) a b
-> Cell (ExceptT e2 m) a b

1Unfortunately, we cannot achieve the goal by reverting to the preliminary
definition of live programs, which did not make the state type existential.
The corresponding Cell definition would not be an instance of Arrow
anymore, and the type signatures would bloat indefinitely. But worst of all,
bindCell would restrict the state of all cells the handler could output to
the same type! Except in very simple cases, we could not branch between
different cells at all.

-> Cell (ExceptT (e1, e2) m) a b
cell1 `andThen` Cell { .. } = cell1 >>>= Cell
{ cellStep = \state (e1, a) ->

withExceptT (e1,) $ cellStep state a
, ..
}

Given two Cells, the first may throw an exception, upon
which the second cell gains control. As soon as it throws a
second exception, both exceptions are thrown as a tuple.

At this point, we unfortunately have to give up the efficient
newtype. The spoilsport is, again the type class Data, to
which the exception type e1 is subjected (since the exception
must be stored during the execution of the second cell). But
the issue is minor, it is fixed by defining the free functor, or
Co-Yoneda construction:
data CellExcept m a b e = forall e' .

Data e' => CellExcept
{ fmapExcept :: e' -> e
, cellExcept :: Cell (ExceptT e' m) a b
}

While ensuring that we only store cells with exceptions that
can be bound, we do not restrict the parameter type e.

It is known that this construction gives rise to a Functor
instance for free:
instance Functor (CellExcept m a b) where
fmap f CellExcept { .. } = CellExcept
{ fmapExcept = f . fmapExcept
, ..
}

The Applicative instance arises from the work we have
done so far. pure is implemented by throwing a unit and
transforming it to the required exception, while sequential
application is a bookkeeping exercise around the previously
defined function andThen:
instance Monad m

=> Applicative (CellExcept m a b) where
pure e = CellExcept
{ fmapExcept = const e
, cellExcept = constM $ throwE ()
}

CellExcept fmap1 cell1 <*>
CellExcept fmap2 cell2 = CellExcept { .. }
where

fmapExcept (e1, e2) = fmap1 e1
$ fmap2 e2

cellExcept = cell1 `andThen` cell2

3.1 Finite patience with monads
While Applicative control flow is certainly appreciated,
and the live bind combinator >>>= is even more expressive,
it still encourages boilerplate code like the following:

Conference’17, July 2017, Washington, DC, USA

throwBool >>>= proc (bool, a) -> do
if bool
then foo1 -< a
else foo2 -< a

The annoyed library user will promptly abbreviate this pat-
tern:

bindBool
:: Monad m
=> Cell (ExceptT Bool m) a b
-> (Bool -> Cell (ExceptT e m) a b)
-> Cell (ExceptT e m) a b

bindBool cell handler
= cell >>>= proc (bool, a) -> do

if bool
then handler True -< a
else handler False -< a

But, behold! Up to the CellExcept wrapper, we have just
implemented bind, the holy grail which we assumed to be
denied! The bound type is restricted to Bool, admitted, but if
it is possible to bind Bool, then it is certainly possible to bind
(Bool, Bool), by nesting two if-statements. By the same
logic, we can bind (Bool, Bool, Bool) and so on (and of
course any isomorphic type as well). In fact, any finite type
can be bound in principle, by embedding it in such a binary
vector. For what follows, we will only consider finite alge-
braic datatypes. These are essentially the unit type (or any
single constructor type), sum types (or multiple constructor
types) of other finite types, and product types (or multiple
argument constructors). Recursive datatypes are infinite in
Haskell (consider, e.g., the list type).

How can it be that a general bind function does not type-
check, but we can implement one for any finite type? If the
exception type e is finite, the type checker can inspect the
state type of the cell handler e for every possible exception
value, at compile time. All that is needed is a little help to
spell out all the possible cases, as has been done for Bool.
But certainly, we don’t want to write out all possible val-

ues of a type before we can bind it. Again, the Haskellers’
aversion to boilerplate has created a solution that can be tai-
lored to our needs: Generic deriving [2]. We simply need to
implement a bind function for generic sum types and product
types, then this function can be abstracted into a type class,
and GHC can infer a default instance for every algebraic data
type by adding a single line of boilerplate. Since the type
class is defined for all finite algebraic datatypes, we will call
it Finite. Any user-contributed or standard type can be an
instance this type class, given that it is not recursive.

It is possible to restrict the previous CellExcept definition
by the typeclass:

data CellExcept m a b e = forall e' .
(Data e', Finite e') => CellExcept
{ fmapExcept :: e' -> e

, cellExcept :: Cell (ExceptT e' m) a b
}

Implementing the individual bind functions for sums and
products, and finally writing down the complete Monad in-
stance is a tedious exercise in Generic deriving.
We can save on boiler plate by dropping the Coyoneda

embedding for an “operational” monad:
data CellExcept m a b e where

Return :: e -> CellExcept m a b e
Bind
:: CellExcept m a b e1
-> (e1 -> CellExcept m a b e2)
-> CellExcept m a b e2

Try
:: (Data e, Finite e)
=> Cell (ExceptT e m) a b
-> CellExcept m a b e

The Monad instance is now trivial:
instance Monad m => Monad (CellExcept m a b) where
return = Return
(>>=) = Bind

As is typical for operational monads, all of the effort now
goes into the interpretation function:
runCellExcept

:: Monad m
=> CellExcept m a b e
-> Cell (ExceptT e m) a b

runCellExcept (Bind (Try cell) g)
= cell >>>= commute (runCellExcept . g)

runCellExcept ... = ...

As a slight restriction of the framework, throwing excep-
tions is now only allowed for finite types:
try

:: (Data e, Finite e)
=> Cell (ExceptT e m) a b
-> CellExcept m a b e

try = Try

In practice however, this is less often a limitation than first
assumed, since in the monad context, calculations with all
types are allowed again.

References
[1] Levent Erkök. 2002. Value recursion in monadic computations. Ph.D.

Dissertation. OGI School of Science & Engineering at OHSU.
[2] José Pedro Magalhães, Atze Dijkstra, Johan Jeuring, and Andres Löh.

2010. A generic derivingmechanism for Haskell. InACM Sigplan Notices,
Vol. 45. ACM, 37–48.

[3] Ivan Perez, Manuel Bärenz, and Henrik Nilsson. 2016. Functional Reac-
tive Programming, Refactored. In Proceedings of the 9th International
Symposium on Haskell (Nara, Japan) (Haskell 2016). ACM, 33–44.

	Abstract
	1 Arrows and typeclasses
	2 Monadic stream functions and final coalgebras
	3 Monads for control flow
	3.1 Finite patience with monads

	References

