
Functional reactive programming and clock calculus
in Haskell

Manuel Bärenz (Bamberg) and Ivan Perez (Nottingham)

December 4, 2015

Yampa in a nutshell
Side effects and explicit clock calculus

Multi-rate systems and resampling

Objective

A framework for reactive programming, that. . .
. . . is functional (here: Haskell), so we could have

reasoning about reactive programs,
determinism, automatic test generation, monads, . . .

. . . can model sideeffects easily

. . . has explicit clocks
in the type system!

. . . gives a decent API for implementing multi-rate systems and
resampling

with separation of data and synchronisation aspects.

Yampa in a nutshell
Side effects and explicit clock calculus

Multi-rate systems and resampling

Stream functions and signal functions
“Reactimation”
Shortcomings of Yampa

Yampa

Precursor: Conal Elliot’s Fran
Henrik Nilson, Paul Hudak et al.
Signal flow language embedded in Haskell
Real time or simulation
No space or time leaks (in the framework)

Yampa in a nutshell
Side effects and explicit clock calculus

Multi-rate systems and resampling

Stream functions and signal functions
“Reactimation”
Shortcomings of Yampa

Why Haskell?
Use existing compilers
Use existing, very flexible type system
Lots of libraries

Disadvantages
Realtime < 1 ms..?

∼ Garbage collector
Compile to microprocessors & embedded systems?
(Executable size ∼ 1 MB)

Yampa in a nutshell
Side effects and explicit clock calculus

Multi-rate systems and resampling

Stream functions and signal functions
“Reactimation”
Shortcomings of Yampa

Definition: Causal stream function

data StreamF a b
= StreamF︸ ︷︷ ︸ (a︸︷︷︸ → (b,︸︷︷︸ StreamF a b︸ ︷︷ ︸))

Constructor Input Output New state

Example

streamFunction :: StreamF a b

streamFunctiona b

Yampa in a nutshell
Side effects and explicit clock calculus

Multi-rate systems and resampling

Stream functions and signal functions
“Reactimation”
Shortcomings of Yampa

Composability

Use composition� for data flow:

(�) :: StreamF a b → StreamF b c → StreamF a c

Example

streamFunction :: StreamF () Int
streamFunction = constantly 3� sum� arr (∗2)

constantly 3 sum arr (∗2)(), (), (). . .
3, 3, 3. . . 3, 6, 9. . .

6, 12, 18. . .

Yampa in a nutshell
Side effects and explicit clock calculus

Multi-rate systems and resampling

Stream functions and signal functions
“Reactimation”
Shortcomings of Yampa

Modularity

Combine several stream functions parallely:

(∗ ∗ ∗) :: StreamF a b → StreamF c d → StreamF (a, c) (c , d)

Example

streamFunction ∗ ∗ ∗ anotherStreamFunction

streamFunction

anotherStreamFunction

a

c

b

d

Yampa in a nutshell
Side effects and explicit clock calculus

Multi-rate systems and resampling

Stream functions and signal functions
“Reactimation”
Shortcomings of Yampa

Signals as streams with a time input

type SignalFunction a b = StreamF (Double, a) b

someSignalFunctiona b

samplingPeriod

Composition

sf1 sf2a b

samplingPeriod

Yampa in a nutshell
Side effects and explicit clock calculus

Multi-rate systems and resampling

Stream functions and signal functions
“Reactimation”
Shortcomings of Yampa

Main loop of Yampa (simplified pseudocode)

reactimateYampa sensor signalF actuator = do
samplingPeriod ← measureSamplingPeriod
a← sensor
let (b, newSignalF) = signalF (samplingPeriod , a)
actuator b
reactimateYampa sensor newSignalF actuator

Yampa in a nutshell
Side effects and explicit clock calculus

Multi-rate systems and resampling

Stream functions and signal functions
“Reactimation”
Shortcomings of Yampa

Sensors and actuators aren’t modular
Sensors and actuators are static
No side effects in the signal functions (no debugging, global
state, exception handling etc.)
One global single clock at only one speed (as fast as possible)

Yampa in a nutshell
Side effects and explicit clock calculus

Multi-rate systems and resampling

Monads as side effects
Stream functions with side effects
Clocks as sideeffectful streams
Execution with different clocks
Clocks at the type level

sensor ::m a A side effect with result a
actor :: b → m () A side effect depending on b, with result void

m controls the strength of the side effect:

Monad m Side effect

IO Any possible side effect (“Input/Output”)
Identity No side effect
State Global state variable
. . . Your favourite embedded DSL

. . . exceptions, debugging, logging,. . .

Yampa in a nutshell
Side effects and explicit clock calculus

Multi-rate systems and resampling

Monads as side effects
Stream functions with side effects
Clocks as sideeffectful streams
Execution with different clocks
Clocks at the type level

Actual definition: Monadic stream function

data MStreamF m a b
= MStreamF (a→ m (b,MStreamF a b))

type MSignalF m a b = MStreamF m (Double, a) b
type Sensor m a = MSignalF m () a
type Actuator m a = MSignalF m a ()

Treat sensors, signal functions and actuators the same:

reactiveProgram :: MSignalF m () ()
reactiveProgram = sensor � signalFunction� actuator

Yampa in a nutshell
Side effects and explicit clock calculus

Multi-rate systems and resampling

Monads as side effects
Stream functions with side effects
Clocks as sideeffectful streams
Execution with different clocks
Clocks at the type level

Parallel composition

bigProgram = (sensor1 � sf1 � actuator1)
∗ ∗ ∗

(sensor2 � sf2 � actuator2)

sensor1 sf 1 actuator1
() a1 b1 ()

sensor2 sf 2 actuator2
() a2 b2 ()

Yampa in a nutshell
Side effects and explicit clock calculus

Multi-rate systems and resampling

Monads as side effects
Stream functions with side effects
Clocks as sideeffectful streams
Execution with different clocks
Clocks at the type level

Debugging as a side effect “in the middle”

Trace (pseudocode)

tracingExample =
someSensor � trace "Sensor signal: "
� furtherProcessing � actuator

Debugger pause (actual code)

debuggingExample = reactimateR $
constantly (3 :: Double)� integral
� pauseOn (λx → x > 5 ∧ x 6 6) "between 5 and 6: "
� liftSF print @@ TenPerSecond

Yampa in a nutshell
Side effects and explicit clock calculus

Multi-rate systems and resampling

Monads as side effects
Stream functions with side effects
Clocks as sideeffectful streams
Execution with different clocks
Clocks at the type level

Definition: Monadic streams and clocks (simplified)

type MStream m a = MStreamF m () a

class Clock c where
ticks ::MStream m Time

Time is some type representing a time domain, say UTCTime
(real time) or Double (simulation).
ticks is a sideeffectful stream of time stamps. Repeat:

1 Wait until the tick is due
2 Return the current time stamp

ticks

Time

t0 t1 t2 t3 t4 t5

Yampa in a nutshell
Side effects and explicit clock calculus

Multi-rate systems and resampling

Monads as side effects
Stream functions with side effects
Clocks as sideeffectful streams
Execution with different clocks
Clocks at the type level

Constant sample rate (“pull”)

runEasyExample = reactimateR $
constantly 3� liftSF print @@ FivePerSecond

reactimateR The main loop
@@ Specify clock
liftSF Lifts a “sideeffectful function” to a

(sideeffectful) signal function.

Events are clocks, too!

pushExample = reactimateR $
tickInfo � arr length� liftSF print @@ KeyboardClock

Yampa in a nutshell
Side effects and explicit clock calculus

Multi-rate systems and resampling

Monads as side effects
Stream functions with side effects
Clocks as sideeffectful streams
Execution with different clocks
Clocks at the type level

Some different kinds of clocks:
Constant rate
“As fast as possible”
Event-based (user-input, web server etc.)

Yampa in a nutshell
Side effects and explicit clock calculus

Multi-rate systems and resampling

Monads as side effects
Stream functions with side effects
Clocks as sideeffectful streams
Execution with different clocks
Clocks at the type level

Putting the clock in the type signature

easyExample :: SF FivePerSecond IO () ()
easyExample = constantly 3� liftSF print

runEasyExample = reactimateR $
easyExample @@ FivePerSecond

SF clocked Signal Function
FivePerSecond Type specifying the clock (think: sampling

speed) at which the SF has to run

Lots of clocks are singleton types =⇒ choose the same name for
the clock type and the single inhabitant.

Yampa in a nutshell
Side effects and explicit clock calculus

Multi-rate systems and resampling

Monads as side effects
Stream functions with side effects
Clocks as sideeffectful streams
Execution with different clocks
Clocks at the type level

Type level clocks as safety measure

This won’t compile

lifeCriticalPart :: SF CriticalRealTime m a b
lifeCriticalPart = ...

main = reactimateR $ lifeCriticalPart @@ SomeSlowClock

Neither will this

slowPart :: SF SomeSlowClock m b c
slowPart = ...

invalidComposition = slowPart � lifeCriticalPart

Yampa in a nutshell
Side effects and explicit clock calculus

Multi-rate systems and resampling

Separation of aspects
Data: Resampling buffers
Clocks: Scheduling
Examples
In-depth example: A small game

. . . but if SF s with different clocks can’t be composed with�,
how will they communicate?
There is no single, general solution. Need framework for
resampling!
Separate two aspects:

Resampling of data streams (bounded FIFO, interpolation, . . .)
Scheduling of clocks (static schedule, synchronous,
asynchronous, concurrently, . . .)

Yampa in a nutshell
Side effects and explicit clock calculus

Multi-rate systems and resampling

Separation of aspects
Data: Resampling buffers
Clocks: Scheduling
Examples
In-depth example: A small game

Actual code from the library

data ResBuffer m a b =
ResBuffer {put :: a→ m (ResBuffer m a b)

, get :: m (b,ResBuffer m a b)
}

Some example implementations from the library
freshestValue :: a→ ResBuffer m a a
fifo :: a→ ResBuffer m a a
collect :: ResBuffer m a [a]
mealy ::Mealy s (Maybe a) b → s → ResBuffer m a b
Could implement interpolation easily

Use bounded versions of fifo and collect to avoid space leaks!

Yampa in a nutshell
Side effects and explicit clock calculus

Multi-rate systems and resampling

Separation of aspects
Data: Resampling buffers
Clocks: Scheduling
Examples
In-depth example: A small game

Actual code from the library, simplified

type Schedule c1 c2 m
= c1 → c2 → MStream m (Time,Either (Tick c1) (Tick c2))

Time

Combined

Clock 1

Clock 2

0.5

(0.5, Left)

3

(3, Left)

5.5

(5.5, Left)

8

(8, Left)

0.8

(0.8, Right)

2.3

(2.3, Right)

3.8

(3.8, Right)

5.3

(5.3, Right)

6.8

(6.8, Right)

8.3

(8.3, Right)

Combined clock ∼ Lustre-like base clock!

Yampa in a nutshell
Side effects and explicit clock calculus

Multi-rate systems and resampling

Separation of aspects
Data: Resampling buffers
Clocks: Scheduling
Examples
In-depth example: A small game

Some example implementations from the library
concurrently :: Schedule c1 c2 IO

Launch two threads, run one clock in each thread.
Side effect in IO

=⇒ nondeterministic (in naive implementation)
ratioHalf ::Monad m⇒ Schedule c (HalfFrequency c m) m

After two ticks of c , do one tick of HalfFrequency c
immediately.
Arbitrary monad: no side effects necessary

=⇒ deterministic

Yampa in a nutshell
Side effects and explicit clock calculus

Multi-rate systems and resampling

Separation of aspects
Data: Resampling buffers
Clocks: Scheduling
Examples
In-depth example: A small game

resamplingTest = reactimateR $
timeSinceStart � trace "Putting " @@ Second

freshestValue 0−@− ratioHalf −→
trace "Getting "� constantly () @@ (HalfFrequency Second)

resamplingTest2 = reactimateR $
tickInfo @@ KeyboardClock

fifo "(empty)"−@− concurrently −→
liftSF print @@ Second

Yampa in a nutshell
Side effects and explicit clock calculus

Multi-rate systems and resampling

Separation of aspects
Data: Resampling buffers
Clocks: Scheduling
Examples
In-depth example: A small game

Main loop

reactimateR $
count � arr even� trace "Gravity: " @@mouseDownClock

freshestValue True −@− concurrently −→
physics �
model @@ FourtyFPS

Add additional resampling easily!

Yampa in a nutshell
Side effects and explicit clock calculus

Multi-rate systems and resampling

Separation of aspects
Data: Resampling buffers
Clocks: Scheduling
Examples
In-depth example: A small game

QuickCheck

Formulate hypothesis to test

noBulletThroughPaper :: SF TestClock Identity Bool Bool
noBulletThroughPaper = physics � arr (λ(v , x)→ x 6 20)

Let QuickCheck automatically generate test data

testReflect = quickCheckWith
(Args Nothing 300 300 300 True)
noBulletThroughPaper

Thank you for your attention!

	Yampa in a nutshell
	Stream functions and signal functions
	``Reactimation''
	Shortcomings of Yampa

	Side effects and explicit clock calculus
	Monads as side effects
	Stream functions with side effects
	Clocks as sideeffectful streams
	Execution with different clocks
	Clocks at the type level

	Multi-rate systems and resampling
	Separation of aspects
	Data: Resampling buffers
	Clocks: Scheduling
	Examples
	In-depth example: A small game

