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Abstract
Processing data at different rates is generally a hard prob-
lem in reactive programming. Buffering problems, lags, and
concurrency issues often occur. Many of these problems
are clock errors, where data at different rates is combined
incorrectly. Techniques to avoid clock errors, such as type-
level clocks and deterministic scheduling, exist in the field
of synchronous programming, but are not implemented in
general-purpose languages like Haskell.

Rhine is a clock-safe library for synchronous and asynchro-
nous Functional Reactive Programming (FRP). It separates
the aspects of clocking, scheduling and resampling from each
other, and ensures clock-safety at the type level. Concurrent
communication is encapsulated safely. Diverse reactive sub-
systems can be combined in a coherent, declarative data-flow
framework, while correct interoperability of data at differ-
ent rates is guaranteed by type-level clocks. This provides a
general-purpose framework that simplifies multi-rate FRP
systems and can be used for game development, media ap-
plications, GUIs and embedded systems, through a flexible
API with many reusable components.

CCS Concepts • Software and its engineering→ Func-
tional languages;Data flow languages;Concurrent program-
ming structures; Domain specific languages;

Keywords functional reactive programming, haskell, reac-
tive programming, asynchronous programming
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Time Data

Synchronous Atomic clocks Signal functions
Asynchronous Schedules Resampling buffers

Table 1. Separation of aspects in Rhine

with the video card refresh rate (e.g., 60Hz), while the game
physics may need to run faster, and user input may be re-
ceived only scarcely and at unpredictable times [13]. Navi-
gation systems combine data from GPS, polled tens of times
per second, with data from accelerometers, gyroscopes and
magnetometers, polled tens of thousands of times per second.

Coordinating these systems running at different rates is a
hard problem in general [19]. Many kinds of bugs can occur,
such as accidental synchronisation of independent subsys-
tems, concurrency issues, buffer underruns and overflows,
and space and time leaks.
Functional descriptions of reactive systems suffer from

similar issues. Functional Reactive Programming [8, 10, 20]
frameworks either work synchronously, or leave it to users to
coordinate subsystems. Other asynchronous reactive frame-
works show similar limitations [25].

Synchronous languages like Lustre [6] and Signal [3] intro-
duce explicit clocks as time-varying boolean expressions at
value level. While this approach is suitable for domains like
critical systems, their robustness stems from using a limited
language to describe clocks, and on using proof techniques
that cannot be applied to arbitrary Haskell expressions.

This paper addresses these limitations with Rhine, a frame-
work for explicit coordination of multi-rate FRP systems.
Rhine’s key strength is that it separates conceptual notions,
like signals, data dependency and control, from operational
aspects, like clocking, scheduling and resampling.

In Rhine, clock information is expressed at the type level,
so that incorrectly clocked programs are rejected at com-
pile time. Subsystems running at different rates that need
to communicate must be coordinated explicitly and safely,
deciding when components become active (scheduling) and
how data is transferred and adapted between different rates
(resampling). The mechanisms we provide for each aspect
are illustrated in Table 1.
Rhine has been designed as a minimal DSL embedded in

Haskell, enabling us to reuse existing libraries to write real-
world applications with little or no wrapper code for the
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backends. Implementations of clocks, schedules and resam-
pling strategies for standard cases are available, as well as
example applications, facilitating adoption.

This paper makes the following contributions:
• Data and clocking aspects, as well as synchronous and
asynchronous aspects, are separated clearly, and their
compatibility asserted via clock types.

• Features from synchronous languages like determinis-
tic schedules are brought into the Haskell ecosystem.

• Concepts from arrowized and classical FRP are unified.
Standard reactive programming techniques are imple-
mented as modular components of a library1 which
easily connects to backends.

Outline
Section 2 revisits synchronous FRP, with emphasis on arrow-
ized FRP, as well as prior work on monadic stream functions,
which define reactive constructs with side effects. Section 3
introduces a notion of type level clocks, used in Section 4
to introduce clock-safe synchronous FRP in Rhine. Sched-
uling and asynchronous data flow is covered in Section 5.
In Section 6 all concepts are combined to Rhine’s main pro-
grams. Section 7 gives an overview over the various signal
processing features, clocks, schedules and resampling buffers
that Rhine has to offer. It also discusses connections to other
frameworks, and applications built with Rhine. Qualitative
comparisons to other frameworks and discussion of related
work are found in Section 8.

2 Background
To make the paper self contained, this section presents
the basics of synchronous arrowized FRP as embodied by
Yampa [8, 20] and Dunai [24]. We identify the shortcomings
that we seek to address in later sections with Rhine, which
extends Dunai with clocks and asynchronicity.

Signals and Signal Functions A central concept in Func-
tional Reactive Programming is that of a signal, a value vary-
ing with time. Intuitively, signals can be seen as functions
with type time -> a, where a is the signal value type and
time is a type modelling points in time (for now, Double).
Direct implementations of signals typically suffer from

time and space leaks [8, 9]. While classical FRP frameworks
alleviate the issue with a variety of techniques, arrowized
FRP frameworks such as Yampa [20] avoid the issue concep-
tually. Taking the “Functional” in FRP literally, the arrowized
approach emphasises signal functions, which semantically
model causal functions from signals to signals, but are imple-
mented in continuation-passing style. Signals are not first
class, but exist only as inputs and outputs of signal functions.
Each tick, Yampa-style signal functions are fed an input

value of type a and the time step:

1Available open-source at https://github.com/turion/rhine.

data YSF a b = YSF (a -> Double -> (b, YSF a b))

The step size, which is the time since the last tick, is not fixed.
Rather, the response depends on it continuously, in the form
of the second parameter (here as a Double). Then, an output
sample of type b is created, together with a continuation that
processes the next tick.

Monadic Synchronous Stream Processing Knowledge
of time, exemplified here as the reader monad Double ->,
can be seen as a side effect. Dunai [24] generalises Yampa
in this aspect: instead of reading the time step each tick, we
allow any side effect2 to be executed:
data MSF m a b = MSF (a -> m (b, MSF m a b))

The abbreviation MSF stands for monadic stream function,
since they are most powerful when m is a monad (which will
be assumed from now on).

Dunai does not introduce hidden side effects, unlike many
other FRP frameworks. The side effects of an MSF are ex-
plicit in its type signature, and one may constrain the stream
function to be completely pure.

Arrows, Loops and Effects Monadic stream functions are
instances of the Arrow type class, which extends Category.
Thus there is an identity arrow, and pure functions can be
lifted to signal functions, which in turn can be composed
parallelly and sequentially:
id :: MSF m a a
arr :: (a -> b) -> MSF m a b
(>>>) :: MSF m a b -> MSF m b c -> MSF m a c
(***) :: MSF m a b -> MSF m c d

-> MSF m (a, c) (b, d)

Strikingly, not only pure functions can be lifted to MSFs, but
also Kleisli arrows:
arrM :: (a -> m b) -> MSF m a b

Additionally, Dunai provides initialised feedback loops.
feedback :: c -> MSF m (a, c) (b, c)

-> MSF m a b

This allows data to be delayed andmemory built up, which
enables implementing signal processing components that
depend on history, like integrators.
Diverse monads offer many convenient possibilities. Sig-

nal functions may share state and environment variables
without passing them around explicitly. The list monad al-
lows for branching computations. Dunai programs can be
stopped gracefully with Either e.

Effects can be combined throughmonad transformers. The
functions used to create and handle effects for transformers
in standard Haskell can be generalised to useful functions
on MSFs. For example, escaping an ExceptT e effect means
handling exceptions of type e and thus control flow, which
allows us to model streams that terminate, as demonstrated
in the following.
2Dependency on time, as a side effect, we will be reintroduced soon.

https://github.com/turion/rhine
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Control Flow through Exceptions Control flow and ter-
mination, which may seem ad hoc in Yampa, become entirely
natural with the ExceptT monad transformer3. If a monadic
stream function wishes to terminate with a result value e,
it simply produces the side effect Left e. For example, we
may throw an exception on the input Just e:
throwMaybe :: MSF (ExceptT e m) (Maybe e) ()

If the program should continue, an exception handler has
to be supplied that calculates a continuation (which may in
turn raise an exception of a different type). With a simple
newtype, MSFs become monads in the exception type:
newtype MSFExcept m a b e

= MSFExcept (MSF (ExceptT e m) a b)
return :: e -> MSFExcept m a b e
(>>=) :: MSFExcept m a b e1

-> (e1 -> MSFExcept m a b e2)
-> MSFExcept m a b e2

The function return throws an exception. Bind corresponds
to catching an exception and switching to a continuation.
For convenience, Dunai offers functions to enter and leave
the newtype:
try :: MSF (ExceptT e m) a b

-> MSFExcept m a b e
safely :: MSFExcept m a b Void -> MSF m a b

In colloquial terms, try says “run the MSF until an exception
occurs”, whereas safely says “all exceptions were handled
and no exception can occur anymore, thus the ExceptT layer
can be removed”. This leads to a convenient interface for
control flow, as will be demonstrated in Section 4.2.

Main Loops Running the main event loop in Yampa re-
quires an unwieldy separation of the program into data-
producing sensors and data-consuming actuators (both of
which are in IO), and a pure signal function. In Dunai, sensors
and actuators are just special cases of MSFs:
type Sensor a = MSF IO () a
type Actuator b = MSF IO b ()

A sensor produces data by means of side effects, and an
actuator consumes data while creating side effects.

An MSF can be pre- and post-composed with sensors and
actuators, yielding a closed stream function with no open
inputs or outputs, of type MSF m () (). Running the main
loop4 is now simply:
reactimate :: MSF m () () -> m ()

A closed monadic stream function is run indefinitely (or, if
in the Either monad, until an exception is thrown), and its
behaviour is given by the side effects it produces.

3Recall that ExceptT e m a is isomorphic to m (Either e a).
4Dunai doesn’t insist on controlling the main loop, though, and can be
stepped from other frameworks as well.

Effectful Signal Functions As argued before, knowledge
of time is just another side effect, the Reader monad. The
type of Yampa-style signal functions YSF a b is isomorphic
to MSF (Reader Double) a b.
Combining this temporal aspect with arbitrary further

effects gives effectful synchronous signal functions:
type ESF m a b = MSF (ReaderT Double m) a b

As the outermost effect, the time step can be retrieved from
the environment, whereas the programmer is free to use any
further monads inside the transformer.
Numerical integration, differentiation, and other digital

signal processing components can be implemented as effect-
ful signal functions. It is possible to write non-trivial FRP
programs – e.g. arcade games – in such a framework [22, 24].
Of course, Yampa programs embed into this approach, by
choosing the identity monad for m, but more complex appli-
cations are possible with effects.
To run ESFs using reactimate, we must supply time in-

formation (i.e., sampling times) and pass it to the ReaderT
environment. One can escape reader layers in Dunai:
runReaderS :: MSF (ReaderT r m) a b

-> MSF m (r, a) b

Instead of implicitly reading the value from the environment,
it is passed explicitly as an input. Using runReaderS, we can
turn a top-level signal function into an MSF in which the
sampling times are part of the input stream:
mainESF :: ESF m () ()
runReaderS mainESF :: MSF m (Double, ()) ()

We then need to pre-compose such an MSF manually with a
stream of time steps of type MSF m () Double, resulting in
an MSF m () () which we can run using reactimate.

Shortcomings Let us illustrate the limitations of synchro-
nous FRP in practice with an example that will lead us
through the rest of the article.

Imagine we want to create a simple simulation of the game
of “fetch” with a virtual dog. The user decides when to throw
the ball at a random start velocity, the simulation of the
ball is executed, and the status is presented on the screen.
Conceptually, we would like to express data dependencies
in a reactive system as follows:
mainESF :: ESF IO () ()
mainESF = startVel >>> ball >>> statusMsg

-- To be defined elsewhere
startVel :: ESF IO () StartVel
ball :: ESF m StartVel Ball
statusMsg :: ESF IO Ball ()
type Ball = ...
type StartVel = ...

However, imagine that, as it could occur in real-world appli-
cations, different subsystems have to run at different frequen-
cies. The user can trigger an event (i.e., throw the ball at a
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random velocity) by pressing the return key at any time. The
simulation of the simple physical system runs in real-time,
with, for example, a temporal resolution of 10 milliseconds.
The status message the position of the ball is displayed on the
console twice per second, and requires exactly 50 simulation
steps. But the definition of mainESF forces all subsystems to
tick simultaneously, and thus to run at a wrong rate.
Adjusting the synchronous arrowized FRP implementa-

tion above to account for these multi-rate requirements is
error-prone and unsatisfactory, for a number of reasons.
Since signal functions are synchronous, all subsystems
would need to be sampled at the same times, a severe restric-
tion. To run all systems in the same thread, one needs to
manually downsample the simulation state by counting the
steps and accumulating the data in a list, and only emitting it
for every 50th step. (If instead simulation and status message
run in different threads and communicate through a buffer,
the sampling ratio would not be stable, and the buffer may
be underrun or overflowed.) Furthermore, listening to user
input from the standard input is blocking and has to be
performed in a background thread, while polling a shared
variable in the foreground thread.

Such systems perform unnecessary recomputation [11].
The user input and the output are executed as frequently as
the physical simulation, which is unnecessary and may add
a performance delay. Finally, supplying the stream of time
steps to the simulation manually mixes signals (a conceptual
notion) and sampling times (an implementation detail).

All the mentioned problems arise from forcing implemen-
tation details of scheduling, resampling and communication
onto the programmer, who just wants to declare the data
flow conceptually. Rhine solves these problems by extend-
ing Dunai’s MSFs with clocking information and clock-safe
combinators.
The example is implemented in this article in less than a

hundred lines of literate Haskell5. As we develop the example,
the four aspects from Table 1 are separated. In particular:

• Each of the three subsystems is declared individually,
without worrying about resampling or scheduling.

• All subsystems run safely under their own clock.
• Simulation and status message are synchronised de-
terministically, while the standard input events are
scheduled safely in a separate thread.

• Data is transferred between the different systems with-
out buffering mishaps.

The direction of the data flow will be clearly visible, and the
overview over the whole program can be kept.

3 Clocks
Here, we introduce clocks and time domains. In the next
sections, we associate clocks to signal functions, preventing

5To be made available under https://github.com/turion/rhine on publication.

accidental clock errors, and we provide clock-safe mecha-
nisms to connect signal functions on different clocks.
In Rhine, a running clock is an effectful stream of time

stamps and tags, which may contain further information
about the clock state or the nature of the tick:
type RunningClock m time tag
= MSF m () (time, tag)

A running clockmay produce side effects such as blocking, or
polling the system clock or another device. A running clock
is said to tick at the time stamps it outputs. In the case of real-
time clocks, it is the obligation of the clock implementation
to correctly observe the system time, and to wait, if necessary,
until the desired time has been reached.

Time Domains and Tags The type time in a running
clock is a time domain, it represent points in time. Since
different situations may call for different implementations of
the time type, Rhine parametrises over it with a type class:
class TimeDomain time where

type Diff time
diffTime :: time -> time -> Diff time

The type family Diff time represents time durations. We
can calculate the duration between two sampling points with
diffTime. From now on, it will always be assumed that type
variables called time are instances of TimeDomain. Typical
instances are Double, UTCTime or even Integer.

The additional data supplied by the tags are useful in real
world applications, as they may specify why a clock ticked
(e.g., the occurrence of a particular event), or how it ticked
(e.g., whether an attempt at soft real-time was successful).

Clock Types In this section, we will see how Rhine’s clocks
supply the time steps to the synchronous subsystems in a
clock-safeway, i.e. such that every subsystemwill be supplied
with the correct time steps, and subsystems with different
clocks cannot be synchronised by accident.
The key idea is to let the type checker assert the clock-

safety. Thus, a type class Clock is supplied6, and its instances
will be called clock types:
class Clock m cl where

type Time cl
type Tag cl
initClock
:: cl -> RunningClock m (Time cl) (Tag cl)

For the remainder of the article, it will be assumed that any
type variable called cl is an instance of Clock m.

Two concepts have to be distinguished:
The clock type cl specifies all relevant properties of

the clock, in particular its time domain, when and how
fast it ticks, in which monads its side effects can take
place, and what kind of tags it produces.

6The actual implementation is only slightly more involved to allow for more
complex initialisation actions of the clock.

https://github.com/turion/rhine
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The clock value, i.e. a value of type cl, holds all in-
formation necessary to run the clock, such as event
sockets, device addresses, or implementation choices.
If no information is required, the clock is a singleton.

A running clock supplies absolute times. The time dif-
ferences to the respective last ticks can be calculated using
diffTime. For convenience, the absolute time and the time
since the clock initialisation will also be calculated, and sup-
plied in a data type together with the tag:

data TimeInfo cl = TimeInfo
{ sinceTick :: Diff (Time cl)
, sinceInit :: Diff (Time cl)
, absolute :: Time cl
, tag :: Tag cl
}

Example Three clocks in the UTCTime time domain are
present. The simulation rate at 100 steps per second consti-
tutes a clock, and so does the status display rate at two ticks
per second. The standard input events (when the user presses
the return key) are ticks of a clock as well. It neither ticks at
regular intervals, nor approximates temporal continuity, but
it does tick every time when the subsystem processing the
input line needs to become active. This point of view unifies
events and behaviours, as explained in the next section.

We define the clock types as type synonyms:

type EventClock = StdinClock
type SimClock = Millisecond 10
type StatusClock = Millisecond 500

StdinClock is a singleton. Millisecond n, parameterised
by a type-level natural number representing the step size, is
implemented in the library as a “rescaled” clock:

newtype Millisecond (n :: Nat) = Millisecond
(RescaledClock IO (FixedStep n) UTCTime)

A value of type RescaledClock is an effectful translation of
a clock into another time domain. The intermediate clock
FixedStep n is pure: it successively outputs the tick values
0, n, 2*n etc. in the Integer time domain, without any side
effects. Rescaling to UTCTime by means of IO means to wait
for every tick until the required time span has passed, and
then emit the current real time. Rhine supplies an implemen-
tation, waitClock :: Millisecond n.

4 Clock-safe Synchronous FRP
The fundamental components of Rhine’s signal networks are
called clocked signal functions. They are effectful synchro-
nous signal functions that are aware of the time information
of a particular clock type:

type ClSF m cl a b
= MSF (ReaderT (TimeInfo cl) m) a b

As a key contribution, and the basis for clock-safe coordina-
tion, two clocked signal functions can only be composed if
their clock types agree.
The extra functionality in clocked signal functions is ac-

cess to time information, such as the time since the last tick7:
sinceTickS :: ClSF m cl () (Diff (Time cl))

A closed synchronous signal function can be run together
with a clock value of the correct type:
reactimateCl :: cl -> ClSF m cl () () -> m ()

Internally, the clock is run, and the resulting stream of type
TimeInfo cl (which is calculated from the timestamps), sup-
plies the environments for the ReaderT (TimeInfo cl) ef-
fect in the signal function.

Example In Rhine, it is easy to build a whole program
bottom-up by first creating the synchronous subsystems,
and joining them later.
Let us start with the display of a status message. We rep-

resent the position and the velocity of the ball with a three-
dimensional vector of Doubles:
type Ball = (Double, Double, Double)
type BallVel = (Double, Double, Double)

We would like to print a ball position to the console, and
annotate its clock type to ensure that it is run at the correct
speed. One can simply lift Kleisli arrows to signal functions
with a library function that generalises arr and arrM:
arrMCl :: (a -> m b) -> ClSF m cl a b

The status message display then becomes an actuator since
it consumes data and converts it to an effect:
statusMsg :: ClSF IO StatusClock Ball ()
statusMsg = arrMCl $ \(x,y,z) ->

printf "%.2f %.2f %.2f\n" x y z

4.1 Unifying Events and Behaviours
We can describe events and behaviours in terms of clocked
signal functions. They aremerely distinguished by their clock
types. This is a drastic simplification over classical FRP.

Behaviours In the original spirit of FRP, behaviours de-
scribe a value that continuously changes with time, indepen-
dently of the sampling strategy. Continuity is approached
by sampling at arbitrary times, thus a behaviour signal func-
tion is defined as a clocked signal function which is clock-
polymorphic over a given time domain:
type BehaviourF m time a b
= forall cl. time ~ Time cl => ClSF m cl a b

A typical example of a BehaviourF is numerical integration:
integral

:: (VectorSpace v, Groundfield v ~ Diff time)
=> BehaviourF m time v v

7The other TimeInfo fields can be accessed in a similar manner.
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The incoming signal samples are weighted with the time dif-
ferences and added up, requiring the VectorSpace instance.
The precision and step size of the numerical method can
be adjusted arbitrarily by selecting different clocks. More
examples of signal processing components implemented in
Rhine can be found in Section 7.1.

Events Event sources constitute clocks as well, where the
clock ticks whenever an event is emitted. The original event
data is available as tagS :: ClSF m cl () (Tag cl), and
further events can be created by composition with signal
functions. Two events occur simultaneously8 if they have
the same clock, which is immediately visible in the type.

Example The motion of the ball consists of two modes:
a stationary position at the origin while waiting, and free
fall. Let us implement free fall first. It is a good example of
a behaviour, since the trajectory of the freely falling ball
should conceptually be independent of the sampling rate.
We will only require the simulation to happen in real-time,
and thus constrain the time domain to UTCTime.

freeFall :: Monad m
=> BallVel -- ^ The start velocity
-> BehaviourF m UTCTime () Ball

freeFall v0 = arr (const (0, 0, -9.81))
>>> integralFrom v0 >>> integral

The acceleration is constant gravity. We integrate once to
get the velocity, and again, to get the ball position. The type
signature, polymorphic in the monad m, reflects that there
are no side effects other than awareness of time.

The console standard input is clearly an event source. We
will discard the event data (the line that was entered by the
user) and generate the start velocity of the ball randomly:

startVel :: ClSF IO StdinClock () BallVel
startVel = arrMCl $ const $ do
velX <- randomRIO (-10, 10)
velY <- randomRIO (-10, 10)
velZ <- randomRIO ( 3, 10)
return (velX, velY, velZ)

Every time the return key is pressed, a new start velocity
is produced, thus startVel is a sensor. It is called precisely
when the event occurs, so we need not manually resample
it as Maybe values and provide Nothing when the event is
absent. This is a key difference between Rhine and pull-based
frameworks like Yampa, in which an absent event still carries
an empty value and results in an unnecessary recomputation
of the whole network.

8Non-simultaneous events can be treated with the tools from Section 5.

4.2 Exception Handling and Control Flow
Rhine mimics Dunai’s exception handling interface. The
newtype ClSFExcept m cl a b e encapsulates signal func-
tions on the clock cl throwing exceptions of type e. Excep-
tions can again be thrown with throwMaybe, the monad
interface can be entered with try, and left with safely.

Example To introduce the control flow that switches be-
tween the two modes, we use exceptions:
waiting :: Monad m => ClSF (ExceptT BallVel m)

SimClock (Maybe BallVel) Ball
waiting = throwMaybe >>> arr (const zeroVector)

The waiting mode, constantly outputs the coordinate origin,
but on an input event Just v0 it throws v0 as an exception.

To implement the falling mode, we use arrow notation:
falling :: Monad m

=> BallVel -- ^ Initial velocity
-> ClSF (ExceptT () m) SimClock

(Maybe BallVel) Ball
falling v0 = proc _ -> do

pos <- freeFall v0 -< ()
let (_, _, height) = pos
throwMaybe -< guard $ height < 0
returnA -< pos

The input is ignored, since the ball can only be thrown from
the waiting mode. The current position of the ball is cal-
culated and returned, but before the height would become
negative, a singleton exception is thrown.

Since ClSFExcept is a monad, we can specify the control
flow via do-notation:
ballModes :: ClSFExcept IO SimClock

(Maybe BallVel) Ball void
ballModes = do
v0 <- try waiting
once_ $ putStrLn "Catch!"
try $ falling v0
once_ $ putStrLn "Caught!"
ballModes

The ball is in the waiting mode until it throws the new start
velocity as an exception. At this point the dog owner shouts
“Catch!” to the dog once, using a library function which
executes one monadic action within the current tick:
once_ :: Monad m => m e -> ClSFExcept m cl a b e

The new start velocity is then passed to the falling mode,
which continues until it throws an exception just before
the height becomes negative. We assume a perfect dog that
always catches the ball (with its owner shouting “Caught!”),
and returns it without delay. The simulation restarts. Finally,
the type checker verifies that no exception is left unhandled:
ball :: ClSF IO SimClock (Maybe BallVel) Ball
ball = safely ballModes
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4.3 Clock Safety
In our example, we have not yet addressed how the ball
velocity events emitted by the standard input subsystem are
transported into the simulation subsystem. Rhine ensures
that synchronous components on different clocks do not
communicate directly. The arrow combinators require the
clock types to match:
(>>>) :: ClSF m cl a b -> ClSF m cl b c

-> ClSF m cl a c

One might try to naively connect the two subsystems:
userBall = startVel >>> arr Just >>> ball

But this would accidentally synchronise the systems, and
sample the ball system only when a standard input event
occurs, leading to big lags. By Rhine’s design, such an attempt
will result in a clock type error:
Couldn't match type `Millisecond 10'

with `StdinClock'

The type error is very clear and helpful. Furthermore, the
clock types serve as useful documentation of the processing
rates of the different subsystems.
Nevertheless, the two subsystems will have to communi-

cate eventually. This is addressed in the next section.

5 Asynchronicity
To coordinate subsystems on different clocks safely, we in-
troduce schedules, which determine how two clocks can be
combined, and resampling, which addresses how signal func-
tions at different rates can communicate.

5.1 Schedules
The scheduling problem is the question of when to execute the
ticks of several differently clocked synchronous subsystems.
There is no universal solution for it, and different situations
call for different schedules: some subsystems may be sched-
uled in a deterministic way with a fixed resampling ratio,
while others might have to make use of concurrency.

Consequently, Rhine gives the programmer the freedom
to implement their own schedules, while supplying default
implementations to cover typical use cases.

Schedules A binary schedule for two clocks cl1 and cl2
has the semantics of a universal clock such that cl1 and cl2
are its subclocks. Its tag specifies which subclock ticks:
data Schedule m cl1 cl2
= Time cl1 ~ Time cl2 => Schedule
{ initSchedule :: cl1 -> cl2

-> RunningClock m (Time cl1)
(Either (Tag cl1) (Tag cl2))

}

Depending on the clocks, a binary schedule might not exist
(e.g., if the side effects required by the clocks are incompati-
ble) or not be unique (e.g., if certain ticks of the clocks have

to occur simultaneously, and an order has to be chosen).
Schedules can be polymorphic in the clocks (such as the
concurrency schedule mentioned before), or polymorphic in
the side effects (such as deterministic schedules).

Example The simulation system has to be deterministi-
cally scheduled with the status message, in the sense that
one status message has to emitted after exactly 50 simulation
steps. We want to ensure the determinism of the schedule by
tracking its side effect as a type parameter. The intermedi-
ate FixedStep n clocks, on which Millisecond n is based,
have pure, deterministic schedules in the library.
scheduleFixedStep

:: Schedule m (FixedStep n1) (FixedStep n2)

Also contained in the library is a rescaling of this schedule to
the Millisecond n clocks, which reintroduces the waiting
side effects already present in the clocks, but adds no further
effects. The sampling ratio is thus still deterministic:
scheduleMillisecond

:: Schedule IO (Millisecond n1)
(Millisecond n2)

On the other hand, it is of course impossible to predict how
many steps may pass between two return key presses, so
there is no deterministic schedule for the standard input
clock and the simulation clock. The simplest solution is to
fork separate threads for the two clocks and to collect the
ticks from a shared variable in the foreground thread. In
other words, we rely on Haskell’s concurrency mechanisms
to solve this scheduling problem. Rhine provides a clock-
polymorphic schedule, introducing IO as side effect:
concurrently :: Schedule IO cl1 cl2

It encapsulates all concurrent communication between the
clocks, and thus eliminates typical pitfalls, since no threads
or shared variables need to be created by the programmer.

Clock Trees A binary schedule for two clocks cl1 and cl2
with side effects in m, together with values for the individual
clocks, gives a value of type SeqClock m cl1 cl2. As will
be shown in the next section, sequential clocks are used to
type signal networks that are sequentially composed of two
subsystems, where the subsystem under cl1 produces data
that the subsystem under cl2 consumes.
It is also possible to compose signal networks parallelly,

and again a schedule is needed to clock such compositions.
Such a schedule, and values for the individual clocks, yield a
value of type ParClock m cl1 cl2.

Sequential and parallel clocks are both called combined
clocks, and they tick whenever any of their constituents ticks.
All other clocks are called atomic.

The constituents of combined clocks may themselves be
composed of further clocks, resulting finally in an ordered
tree with atomic clocks at the leaves and clock-safe sched-
ules on the nodes, called the clock tree. Rhine supplies type
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families In and Out, which calculate the clocks at which data
enters, or leaves the system, respectively.

5.2 Resampling
Scheduling describes the clock aspect of running several sys-
tems at different rates, whereas resampling describes the
data aspect. One fundamental advantage that Rhine has over
any other FRP framework in Haskell known to us, is the sep-
aration of these two concerns. The resampling problem can
be treated separately from the scheduling problem, allowing
for modular, reusable solutions. Of course, the two problems
are often intertwined, and some data can only be resampled
under the assumption of specific clocks. This can be encoded
as clock type constraints in Rhine.
Like scheduling, there is no single solution to the resam-

pling problem. The choice is again with the programmer,
and popular resampling techniques (such as buffers or inter-
polations) are already given in the library.

Resampling Buffers The fundamental building block of
resampling provided by Rhine is a resampling buffer :

data ResBuf m cl1 cl2 a b = ResBuf
{ put :: TimeInfo cl1

-> a -> m ( ResBuf m cl1 cl2 a b)
, get :: TimeInfo cl2

-> m (b, ResBuf m cl1 cl2 a b)
}

They are the connecting link between two neighbouring
subsystems. The schedule decides which subsystem ticks. If
the left subsystem produces data, it is stored in the resam-
pling buffer, together with a timestamp from the schedule,
via put. If the right subsystem requires data, it is retrieved
(again timestamped) from the resampling buffer via get. The
implementation is akin to MSFs, in that continuation passing
style is used, but resampling buffers are fundamentally asyn-
chronous: input and output never happen simultaneously.

Clock-polymorphic buffers accept put and get calls at any
time. Buffers requiring a specific pattern of puts and gets
(e.g. to meet space requirements) can constrain the clocks in
the type signature. Resampling buffers can range from digital
signal resampling such as linear, cubic or sinc interpolation,
to buffering and queueing strategies like FIFO queues.

Example Data has to be resampled in two places: at the
boundary between the standard input and simulation sub-
systems, and between the simulation and status subsystems.
From standard input to simulation, we will simply use a

FIFO queue from the library:

fifo :: ResBuf m cl1 cl2 a (Maybe a)

It is clock-polymorphic and side-effect free. Incoming data
is queued in a sequence, and the oldest value, if present, is
output, with Nothing representing an empty buffer.

From the simulation to the status message, we can use
deterministic scheduling and a buffer provided by the library
that collects the values in vectors of statically known length9:
downsampleMillisecond

:: ResBuf m (Millisecond k)
(Millisecond (n * k)) a (Vector n a)

In our example, the type-level natural numbers k and n * k
are known at compile time, and the size of the buffer n is
statically derived. With the operator >>-^ that composes
a resampling buffer with a clock-matching ClSF, we build
our own buffer which – for simplicity – picks the first of all
simulation results that occurred since the last status clock
tick:
downsampleSimToStatus

:: ResBuf IO SimClock StatusClock Ball Ball
downsampleSimToStatus = downsampleMillisecond

>>-^ arr head

Knowing that exactly 50 samples will accumulate for every
tick of the status clock, we can safely apply head to them,
without having to handle the case of an empty vector.

6 Signal Networks and Main Loops
We finally combine all of the previous ideas: signal networks,
which are clock-safe combinations of clocked signal func-
tions with matching resampling buffers, and Rhines, which
are signal networks with a specific clock value.

Signal Networks Asynchronous signal networks consist of
signal functions and resampling buffers that tick under a
given combined clock. They are implemented as trees of the
same shape as the clock tree:
data SN m cl a b where

Synchronous
:: ( cl ~ In cl, cl ~ Out cl)
=> ClSF m cl a b -> SN m cl a b

Sequential
:: SN m clab a b
-> ResBuf m (Out clab) (In clcd) b c
-> SN m clcd c d
-> SN m (SeqClock m clab clcd) a d

Parallel
:: SN m cl1 a b
-> SN m cl2 a b
-> SN m (ParClock m cl1 cl2) a b

In a signal network of type SN m cl a b, m is the type of
side effects, cl is the type of the whole clock, and a and b
are input and output, respectively.

A signal network forms a tree that matches the topology
of its clock. Synchronous signal functions under the cor-
responding atomic clocks sit on the leaves. Sequentially
combined clocks allow the tree to branch, and such nodes
9Rhine uses the implementation from the vector-sized [15] package.
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are tagged by clock-safe resampling buffers. The combined
clock will decide which subnetwork becomes available, and
whether to store data in, or retrieve data from, the buffer.
Two signal networks can also be combined temporally in
Parallel. They will be activated in turns, depending on
which constituent of the parallely combined clock ticks. No
data needs to be transferred between them (thus no buffers
are necessary), but their input and output data types must
match.

Rhines An asynchronous signal network, together with a
value of the correct clock type is called a Rhine (since many
streams flow in it):
data Rhine m cl a b = Rhine

{ sn :: SN m cl a b
, clock :: cl
}

A closed Rhine can be run as a main loop:
flow :: Rhine m cl () () -> m ()

The main loop waits for the next tick of the top schedule, and
then navigates through the tree to step the corresponding
synchronous signal function on the leaf, putting data into,
and getting data from the neighbouring resampling buffers.

Example The operator @@ combines a signal function with
a clock value of the correct type. With this syntactic sugar,
we create the synchronous subsystems:
startVelRh :: Rhine IO StdinClock () BallVel
startVelRh = startVel @@ StdinClock

ballRh :: Rhine IO SimClock (Maybe BallVel) Ball
ballRh = ball @@ waitClock

statusRh :: Rhine IO StatusClock Ball ()
statusRh = statusMsg @@ waitClock

With further syntactic sugar, we can join the subsystems:
simToStatus :: ResamplingPoint IO SimClock

StatusClock Ball Ball
simToStatus
= downsampleSimToStatus -@- scheduleMillisecond

ballStatusRh
:: Rhine IO (SeqClock IO SimClock StatusClock)

(Maybe BallVel) ()
ballStatusRh = ballRh >--simToStatus--> statusRh

A ResamplingPoint is a mere bookkeeping tool that pairs
a resampling buffer and clock-matching schedule. The oper-
ator -@- combines a resampling buffer and a schedule to a
resampling point. The operators >-- and --> compose two
Rhines along a resampling point, building up the clock tree
and the signal network tree simultaneously.

The complete Rhine program can finally be run:
main :: IO ()
main = flow $ startVelRh
>-- fifo -@- concurrently --> ballStatusRh

0.00 0.00 0.00
0.00 0.00 0.00

Catch!
1.09 1.51 3.08
2.39 3.31 4.49
3.68 5.11 3.44
Caught!
0.00 0.00 0.00
[...]

In this example, the main program has to be terminated
manually, but one can easily add a graceful exit by lifting
the Rhine to the ExceptT () IO monad and throwing () in
the standard input subsystem when the user enters "q".

7 A Brief Tour through the Library
7.1 Signal Functions and Signal Processing
Rhine provides utilities tomanipulate themonad transformer
stack of a clocked signal function, such as lifting into trans-
formers, and entering and leaving ReaderT r layers. In par-
ticular, it provides control flow via exceptions, like Dunai.

Using knowledge of time as an extra side effect, standard
digital signal processing tools are implemented in terms of
ClSFs, such as edge detectors, numerical integration and
differentiation, moving averages, and high and low passes.

7.2 Clocks
Real Time Apart from the Millisecond n clocks, which
were presented in the example, other implementations of
soft-real-time clocks (polling the system time) exist, notably
the Busy clock which tries to tick without delay.
Rhine provides an AudioClock for soft-real-time audio

synthesis and analysis. The computation of the audio samples
happens in buffers, and is aligned with system time at the
end of each completed buffer. The type is parametrised by a
data kind representing the sampling rate, so accidental pitch
changes due to missing resampling cannot occur.

Deterministic Clocks The FixedStep n clock, with the
type level natural number n, has already been mentioned in
the example. It is generalised by the deterministic Periodic
clocks, which are parametrised by a type level list of natural
numbers. These clocks tick in periodic steps, for example
Periodic '[1, 2] ticks at the times 1, 3, 4, 6, and so on.

Deterministic clocks can be used to test Rhine programs, a
notable feature in the FRPworld [26]. Since the clocks require
no side effects, a simulation can be run at arbitrary speed.
This is useful to debug Rhine programs with QuickCheck [7],
where we can run a whole signal network with randomly
generated test data, and automatically check its behaviour.
Another practical use case is batch processing of big files.

Event Clock As explained in Section 4.1, an event source
is a clock. Rhine offers a general purpose Event clock, which
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encapsulates a Chan across which the events are communi-
cated. Users can emit events from any place in the signal
network with the library method emit. Like the standard in-
put clock from the example, it blocks until an event becomes
available, and then ticks, storing the event data in the Tag.

Concurrent data While Rhine supplies concurrent sched-
uling, data is processed in a single thread by default. This
is undesired when performing expensive computations or
blocking effects that take longer than their allotted time step.

A standard solution is to place the computation in a sepa-
rate thread, and be notified when the data is ready. In Rhine,
the Event clock can provide such a notification: the Chan
over which it communicates can be shared across several
main Rhines running in separate threads. In one of them, the
time-consuming computation can take place, and the fully
evaluated result is emitted as an event. In the thread where
the Event clock ticks, it is received and made available to
signal functions under this clock.
This technique is especially useful when connecting to

backend libraries with their own notions of events and main
loops. It shares similarities with wormholes [32].

Selection Subclocks For a given reference clock, a sub-
clock can be defined by selecting certain tags:
data SelectClock cl a = SelectClock
{ mainClock :: cl
, select :: Tag cl -> Maybe a
}

The main clock is run, but a tick for the SelectClock occurs
only when select applied to the current tag of the main
clock is Just a. The value a is then the tag of the subclock10.

7.3 Schedules
Concurrent Scheduling As in the example, any two
clocks in IO may be scheduled concurrently. Further sched-
ules for ReaderT r IO, ExceptT e IO and WriterT w IO
exist that synchronise the effects across threads.

Deterministic Schedules The FixedStep and Periodic
clocks using type level natural numbers can be scheduled
deterministically without side effects. Likewise, there exist
deterministic schedules between a selection subclock and its
reference clock, and also between two selection subclocks.

Universal Scheduling To provide a declarative interface
to effectful clocks that can be automatically scheduled, a
new monad transformer ScheduleT diff is defined as a
free monad which takes a time difference argument diff
and adds the functionality of formally waiting for a certain
time before resuming with the effectful computation.

10Two different selection subclocks of the same main clock that produce the
same tag type have the same type at first, so it is customary to distinguish
them by newtyping the tag.

Two arbitrary clocks in the ScheduleTmonad can always
be scheduled, using a single, polymorphic11 schedule:
schedule :: Schedule (ScheduleT diff m) cl1 cl2

If a concrete blocking effect in the encapsulated monad
is provided, the ScheduleT transformer can be escaped. For
example, we can transform formal waiting operations into
IO delays, interpreting Ints as milliseconds:
runScheduleIO :: ScheduleT Int IO a -> IO a

7.4 Resampling Buffers
The library provides a general purpose buffer that keeps
the newest input value in its internal state (defaulting to an
initialisation value), and returns it on a put call:
keepLast :: a -> ResBuf m cl1 cl2 a a

In the special case when cl2 ticks much faster than cl1 (thus
approximating continuity), keepLast models a zero-order
hold. Other interpolation methods, (e.g. first-order holds,
cubic and sinc) are also implemented.
The unbounded FIFO queue has been demonstrated in

the example already. There exists a bounded version which
discards old values on overflow, and analogous LIFO variants.

Utilities Clock polymorphic buffers which are unaware of
the passage of time can be built from asynchronous Mealy
machines, consisting of effectful getter and setter functions:
data AsyncMealy m s a b = AsyncMealy

{ amPut :: s -> a -> m s
, amGet :: s -> m (b, s)
}

timelessResamplingBuffer
:: AsyncMealy m s a b -> s
-> ResamplingBuffer m cl1 cl2 a b

We have already seen combinators that post-compose
ResBufs with clock-matching ClSFs in Section 5, and a
combinator for pre-composition exists as well. One can also
parallelly compose clock-matching resampling buffers.

Avoiding Leaks ResBufs consume a potentially unpredict-
able number of input values to produce one output value.
All put calls can be collected in a list12, and returned when
get is called:
collect :: ResBuf m cl1 cl2 a [a]

But collecting the values in a list can lead to a space leak,
and processing the whole list at once can create a time leak.
Therefore, the implementation of ResBuf in terms of con-
tinuation passing style is justified, since it allows for strict,
leak-free put implementations. For example, if all we would
do is folding the list of collected values, we can do so effi-
ciently with the following buffer from the library instead:
11As a further restriction, both clocks need to operate on the same time
domain, with time difference type diff.
12This list does not contain the time stamps of the put calls, but a generalised
version exists in the library that does.
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foldBuffer
:: (a -> b -> b) -- ^ The folding function
-> b -- ^ The initial value
-> ResBuf m cl1 cl2 a b

The folding function is applied strictly on each put call, so if
b can be stored with constant size and computed in constant
time, the buffer will not have space leaks or time leaks.

7.5 Signal Network Combinators
The library provides numerous utilities and combinators for
signal networks and Rhines. Signal networks can be com-
posed in parallel, albeit in two different ways. First, if the
clock types match, the SNs can be composed by processing
the data in parallel:
(****) :: SN m cl a b

-> SN m cl c d
-> SN m cl (a, c) (b, d)

At one tick of cl, the corresponding component of the first
network is called before the second. Alternatively, if the two
SNs are on different clocks, but have the same input type,
they can be composed as well, although clock-parallelly:
(++++)

:: SN m cl1 a b
-> SN m cl2 a c
-> SN m (ParClock m cl1 cl2) a (Either b c)

At one tick of ParClock m cl1 cl2, one subnetwork be-
comes active, depending on whether cl1 or cl2 has ticked.13

7.6 Wrappers for Other Frameworks
Since Rhine is parametrised over monads, it is easy to inte-
grate it with existing backends. Often, one can simply call
the backend functions via arrMCl.
For backends that have their own notion of events (such

as OpenGL or SDL), it is usually straightforward to connect
them to Rhine’s Event clock, or write a new clock from
scratch. An example implementation for SDL exists.

If the backend has a pure interface, it is usually possible to
attach pure Rhine code to it. To connect to Gloss [18], Rhine
provides a side-effect-free Gloss clock14. Signal functions
under this clock can be simulated in Gloss, which facilitates
developing simple OpenGL applications in Rhine.

7.7 Example Applications
This article is written in literate Haskell and can be executed.
The code is less than 100 lines, with no hidden boiler plate.

13 The input types must match, as opposed to the more familiar operator
+++ from ArrowChoice which is additive in the input type: due to the
separation of clock and data aspects in Rhine, the parallel clock chooses
which subsystem becomes active, while in an ArrowChoice instance, the
decision depends on the incoming data. Similarly, there is no Category
instance, so no Arrow instance for signal networks. We can compose them
sequentially and parallelly, but an identity signal network cannot exist.
14http://hackage.haskell.org/package/rhine-gloss

The rhine-examples package15 contains many small exam-
ples that demonstrate how to write signal functions, use dif-
ferent clocks, run severalmain loops communicating through
events, and handle control flow with exceptions. A presen-
tation and tutorial are also available16. A user-contributed
web application in form of a stock market game compiling
with GHCJS can be found online17.

A more extensive example18 implements an interactive
graphical animation of a solar power system, with Rhine’s
Gloss bindings. The behaviour of the system is literally de-
fined as a pure BehaviourF, with user actions as input and
system state as output. Two backends are supplied, a pure
GUI using Gloss, and an effectful one via the console.

8 Related Work
Most other FRP Haskell frameworks do not supply type-level
clocks, making it hard to reason about the speeds of the dif-
ferent subsystems. To our knowledge, the single exception is
C𝜆aSH [2], which only provides fixed-rate logical subclocks
of a main clock. C𝜆aSH [2] targets hardware circuits and
does not support IO. Rhine provides arbitrary clocks and
works with standard Haskell.

Most frameworks do not explicitly distinguish clocks and
data. In particular, they do not separate the scheduling aspect
from the resampling aspect. In Rhine, this separation allows
for modularity and reusability of Rhine’s components.
Classic (non-arrowized) FRP frameworks inherit the sep-

aration into events and behaviours from Fran [10]. Rhine
unifies and generalises the two concepts. Most classic frame-
works also hide IO primitives under their abstractions, typ-
ically IORefs such as in Sodium [4], Elerea [21] and Reac-
tive Banana [1], or even unsafePerformIO such as in FRP-
Now [27]. Rhine is completely pure, its abstractions are
parametrised over monads. This is very useful since it is
then possible to simulate signal networks, e.g. for testing
purposes, without user interaction. Additionally, one can
reason about the behaviour of the reactive program, since
there are no hidden side effects. For example, Gloss provides
a pure interface, and Rhine can in fact connect to it. The
benefits of IO can be brought back by simply instantiating
the framework with components using IO.
Dunai, Netwire [31], varying [29] and Auto [16] have a

monad type parameter to allow reasoning about the possible
side effects, but they are all synchronous in nature.
Pipes [12] and Conduit [30] are asynchronous and also

quantify over monads. They are powerful in their domain,
but lack any treatment of time and cannot be regarded as
FRP frameworks. Finally, they have no notion of clocks, and
lack the separation of scheduling and resampling.

15Available in https://github.com/turion/rhine.
16https://github.com/turion/rhine-tutorial
17https://github.com/fphh/rhine-ghcjs
18https://github.com/turion/sonnendemo

http://hackage.haskell.org/package/rhine-gloss
https://github.com/turion/rhine
https://github.com/turion/rhine-tutorial
https://github.com/fphh/rhine-ghcjs
https://github.com/turion/sonnendemo
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Outside the Haskell ecosystem, languages like Lucid Syn-
chrone [6], Lustre [14], Signal [3, 17] and Multi-rate Es-
terel [28] introduce notions of clocks and supply useful clock
combinators. With the exception of Lucid Synchrone, clocks
are defined at value level as boolean signals. In contrast, we
do not assume a global reference clock, and use type-level
information to determine clock compatibility. Also, these
systems are designed for analysis and compilation of critical
embedded control software, whereas ours is interoperable
with Haskell and has been designed to facilitate simulation.

The hybrid language Zélus [5] includes constructors to de-
fine point-wise, stateful/discrete-time and continuous-time
signals. The determination of the sampling point at which
to sample each signal is done by using ODEs and numerical
solvers to detect points of zero-crossing. In contrast, Rhine
does not solve an ODE to detect when a signal should be sam-
pled, and relies on the clock implementation. Additionally,
Rhine signals may include type-level information that indi-
cates if they are discrete-time or continuous-time, whereas
in Zélus, this information is required by construction and
determines, via a subtyping relation between these time or
clock domains, how signals can be combined.

9 Summary
We have seen that annotating synchronous subsystems of a
signal network with type level clocks prevents clock errors
and guides through the development of an FRP application.
The separation of data flow, clocking, scheduling and re-
sampling aspects allowed us to combine modular, reusable
components in a clock-safe manner. Behaviours and events
became special cases of clocked signal functions, furthermore
deterministic and concurrent schedules as well as a multi-
tude of resampling and queueing strategies could be unified.
The top-level programs could be declared in an intuitive data
flow fashion, and easily connect to different backends.

As future work, writing more backends for GUI and mul-
timedia would lower the bar for real-life FRP development
more. Bigger example applications would help us better de-
termine how well Rhine’s abstractions scale.
We plan to extend Rhine to compile FRP system descrip-

tions to languages with predictable memory usage, like ATS
and C, to use our proposal for embedded systems. In this
setting, we plan to use recent work on annotating monadic
stream functions with fault tolerance information [23] to
indicate, at the type level, possible faults in Rhine networks.
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