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Abstract

Various mathematical tools are developed with the aim of application in mathematical
physics.
In the first part, a new state sum model for four-manifolds is introduced which

generalises the Crane-Yetter model. It is parametrised by a pivotal functor from
a spherical fusion category into a ribbon fusion category. The special case of the
Crane-Yetter model for an arbitrary ribbon fusion category C arises when we consider
the canonical inclusion C ↪→ Z(C) into the Drinfeld centre as the pivotal functor. The
model is defined in terms of handle decompositions of manifolds and thus enjoys a
succinct and intuitive graphical calculus, through which concrete calculations become
very easy. It gives a chain-mail procedure for the Crane-Yetter model even in the case
of a nonmodular category. The nonmodular Crane-Yetter model is then shown to be
nontrivial: It depends at least on the fundamental group of the manifold. Relations
to the Walker-Wang model and recent calculations of ground state degeneracies are
established.
The second part develops the theory of involutive monoidal categories and half-

twists (which are related to braided and balanced structures) further. Several gaps
in the literature are closed and some missing infrastructure is developed. The main
novel contribution are “half-ribbon” categories, which combine duals – represented
by rotations in the plane by π – with half-twists, which are represented by turns
of ribbons by π around the vertical axis. Many examples are given, and a general
construction of a half-ribbon category is presented, resulting in so-called half-twisted
categories.



Contents

I Introduction 7
1 About this thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1 Monoidal categories with additional structure . . . . . . . . . 9

II Dichromatic state sum models for four-manifolds from

pivotal functors 20
3 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.1 The Crane-Yetter invariant and its dichromatic generalisation 22
3.2 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.1 Diagrammatic calculus on spherical fusion categories . . . . . 24
4.2 4-Manifolds and Kirby calculus . . . . . . . . . . . . . . . . . 29

5 The generalised dichromatic invariant . . . . . . . . . . . . . . . . . . 33
5.1 The generalised sliding property . . . . . . . . . . . . . . . . . 33
5.2 The definition . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
5.3 Proof of invariance . . . . . . . . . . . . . . . . . . . . . . . . 39
5.4 Simply-connected manifolds and multiplicativity under con-

nected sum . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
5.5 Petit’s dichromatic invariant and Broda’s invariants . . . . . . 44

6 Simplification of the invariant . . . . . . . . . . . . . . . . . . . . . . 46
6.1 Simplification for unitary fusion categories . . . . . . . . . . . 47
6.2 Modularisation . . . . . . . . . . . . . . . . . . . . . . . . . . 48
6.3 Cutting strands . . . . . . . . . . . . . . . . . . . . . . . . . . 49

7 The state sum model . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
7.1 The chain mail process and the generalised 15-j symbol . . . . 51
7.2 The state sum . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3



7.3 Trading four-valent for trivalent morphisms . . . . . . . . . . 55
8 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

8.1 The Crane-Yetter state sum . . . . . . . . . . . . . . . . . . . 57
8.2 Non-simply-connected manifolds . . . . . . . . . . . . . . . . . 60
8.3 Dijkgraaf-Witten models . . . . . . . . . . . . . . . . . . . . . 63
8.4 Invariants from group homomorphisms . . . . . . . . . . . . . 66

9 Relations to TQFTs and physical models . . . . . . . . . . . . . . . . 68
9.1 TQFTs from state sum models . . . . . . . . . . . . . . . . . . 69
9.2 Walker-Wang models . . . . . . . . . . . . . . . . . . . . . . . 69
9.3 Quantum gravity models . . . . . . . . . . . . . . . . . . . . . 70
9.4 Nonunitary theories . . . . . . . . . . . . . . . . . . . . . . . . 73
9.5 Extended TQFTs . . . . . . . . . . . . . . . . . . . . . . . . . 73

10 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

III Half-ribbon categories 76
11 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

11.1 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
12 Involutive monoidal categories . . . . . . . . . . . . . . . . . . . . . . 80

12.1 Generalising involutive monoids . . . . . . . . . . . . . . . . . 80
12.2 Involutive monoidal categories . . . . . . . . . . . . . . . . . . 81
12.3 †-categories . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
12.4 Graphical calculus and balanced categories . . . . . . . . . . . 91
12.5 Involutive pivotal categories . . . . . . . . . . . . . . . . . . . 93

13 Half-twists and half-ribbon categories . . . . . . . . . . . . . . . . . . 95
13.1 Half-twists and their graphical calculus . . . . . . . . . . . . . 96
13.2 Half-ribbon categories . . . . . . . . . . . . . . . . . . . . . . 103
13.3 Half-twists in †-categories . . . . . . . . . . . . . . . . . . . . 106
13.4 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
13.5 Strictification of the half-twist . . . . . . . . . . . . . . . . . . 109
13.6 Half-twisted categories . . . . . . . . . . . . . . . . . . . . . . 110

14 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

4



Acknowledgements

I have been lucky to have been supported by many competent and good-willed
researchers.
First and foremost, John Barrett has been a wise and resourceful supervisor. I

have learned from him an immense amount about the topics of this thesis, about
research, the academic world and life in general, and I am very grateful for the time.
I thank him especially for putting up with my stubbornness in the pursuit of topics
dear to me, when others wouldn’t.

It was a pleasure to discuss most topics in this thesis at length with Bruce Bartlett,
who was an attentive listener and supported me generously. Nick Gurski kindly
introduced me to the Yorkshire and Midlands Category Theory Seminar and gave me
great advice and the opportunity to talk to David Yetter, whose work has influenced
mine so much.
One of the most shaping events was the conference in Vienna, organised by Nils

Carqueville, Ingo Runkel and Daniel Murfet, and I’m very grateful towards the
organisers and the participants. I had enlightening discussions there with Jamie
Vicary, Catherine Meusburger, Christoph Schweigert, Alexei Davydov and many
others. Nils, thank you in particular for your ongoing support and trust. I’m looking
forward to continue this work together with you, Gregor, Flavio, Daniel and others.

I thank Steve Simons, whose work has influenced the first part of this thesis, Jamie
Vicary and Bruce Bartlett for the invitation to the TQFTea seminar. I thank Ingo
Runkel and Christoph Schweigert for the invitation to Hamburg, where I could meet
Ehud Meir and Simon Lentner with whom I had very valuable discussions.
Zoltán Kádár, thank you for inviting me to Leeds, Alex Bullivant, thank you for

welcoming me, Eric Rowell and João Faria Martins, thank you for your valuable
advice, Simon Willerton, Tim Porter, Victoria Lebed and many others, thank you
for the discussions.
The non-academic staff in Nottingham were always helpful, even in very special

situations.

Without my friends and colleagues in Nottingham, the time would have been
much less enjoyable. Wilhelm and Benito, we have shared the maxima and minima
of our PhDs together. Ricardo, Sara, Steven, James and Paul, we have shared the
same supervisor, and much more. Carlos, Kai, Yannick, Marco, Pietro, Hugo, Kasia,

5



Weronika, and many more, thank you for tea breaks, reading groups and discussions.
Kirill, Jorma and Sven, thank you for your support and supervision.

Each and every single one involved in the theatre and music performances I have
been part of, thank you for the occasional break from the PhD. Gabe, Ivan, Thorsten,
Paolo, Henrik and the computer scientists in the FP-Lab, thank you for showing me
a way to use category theory in an unexpected and enlightening way. Rehma and
Neill, Claudia, Anna, Rowan, Jyoti and someone who I have inevitably forgotten on
this list, we have shared a good time.
I’m very grateful towards the people in Bamberg who could offer me a place to

write up my thesis, in particular Michael Mendler, but also Martin Sticht for knowing
everything useful and important, and to my colleagues and friends from the theatre.
My friends around the world, thank you for having me on your mind, especially

Alex and Leo from CdE for helping me improve the graphical aspects of my thesis.
A great Thank You has to go to my ever supporting family, and in particular to

my parents, who have always allowed me to go my own way, and supported me on
all great journeys. And thank you, Martina, my greatest fortune.

6



Part I

Introduction

7



1 About this thesis

Many branches of mathematics are inspired by physics. Especially geometry draws
heavy influences from the physical sciences, and quite a few areas (like Riemannian
geometry, gauge theory and symplectic geometry) felt significant advances through
research aimed at physical applications. This is the spirit this thesis is written in:
Pure mathematics, but with applications to physics and geometry in mind. One of
the greatest problems of contemporary fundamental physics is quantum gravity, and
also one of the greatest inspirations for the selection of topics; in the hope that the
results contained in this thesis may be helpful in the search for an answer to this
question.
The other inspiration for this thesis is category theory, to be more specific, the

theory of monoidal categories, higher categories and graphical calculus. When
higher-dimensional algebra is too hard to carry out, it is often possible to represent
morphisms as diagrams and equations as transformations, and to use one’s graphical
intuition to arrive at a simple proof. This way of working playfully, yet rigorously, is
made possible by a deep connection between higher category theory and topology; a
connection which continues to inspire many areas, such as topological quantum field
theories.

This is probably all that can be said in terms of unifying principles about this
thesis. The next two parts are very different:

The second part describes a new state sum model together with a handy graphical
calculus. The Crane-Yetter model, originally developed for the study of quantum
gravity, arises as a special case. The graphical calculus allows for very succinct and
yet precise calculations that can be used to answer open questions and gain new
insights about the Crane-Yetter model with ease.
The third part takes diagrams even more serious and develops the field of half-

twists further. It may appear as an exercise in pure category theory, but in fact
two motivations to study half-twists are Noncommutative Geometry (NcG) – an
approach aiming at a unification of geometry, gravity theories and quantum field
theory – and two-dimensional state sum models, which seem to be intimately related
to NcG.

Since the parts are so different, they deserve an introduction each. Only common
preliminaries are explained in the next section.
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2 Preliminaries

2.1 Monoidal categories with additional structure

In mathematical physics, one encounters a multitude of linear monoidal categories
with additional structure and functors preserving this structure. Usually, the category
Vect of finite dimensional vector spaces over C serves as a trivial example for these.
The additional structures often arise as special cases of higher categorical structures,
for example, monoidal categories are bicategories with one object and braided
categories are in some sense tricategories with one 1-morphism. This beautiful
motivation is explained more closely in the literature, e.g. [SP11, section B.3]. Here
the definitions are given in a closely related manner by discussing their suitability
for graphical calculus. Monoidal categories are needed for a graphical calculus of
one-dimensional ribbon tangles in two dimensions; similarly one needs the braided
structure for evaluating tangle diagrams in three dimensions. An overview of most
commonly used definitions of monoidal categories with additional structure, together
with their graphical calculus, can be found in [Sel10].

Semisimple and linear categories

Definition 2.1. A C-linear category is a category enriched in VectC. If not
mentioned otherwise, all categories in this work are C-linear categories and all
functors are linear functors, that is, functors in the enriched category. This implies
that they are linear on the morphism spaces and preserve direct sums.

Definition 2.2. An object X ∈ ob C is called simple if C(X,X) ∼= C.

Examples 2.3. • In Vect, C is the only simple object up to isomorphism.

• In Rep(G), the representation category of a finite group G, the simple objects
are the irreducible representations.

Note that simple objects are called scalar objects in [Pet08].

Definition 2.4. A linear category C is called semisimple if it has biproducts,
idempotents split (i.e. it has subobjects) and there is a set of inequivalent simple
objects ΛC such that for each pair of objects X, Y , the map

Φ:
⊕
Z∈ΛC

C(X,Z)⊗ C(Z, Y )→ C(X, Y )

9



obtained by composition and addition is an isomorphism. If the set ΛC is finite, then
the category is called finitely semisimple.

Remark 2.5. The requirements of biproducts and subobjects in this definition are not
very restrictive. According to the discussion in [Mü03a], any category that satisfies
all of the conditions in the definition of a semisimple category except for the existence
of biproducts and subobjects can be embedded as a full subcategory of a semisimple
category.

Example 2.6. For every finite group G, Rep(G) is finitely semisimple. The simple
objects are the irreducible representations.

Lemma 2.7. Let Z1 and Z2 be two nonisomorphic simple objects. Then there are
no nontrivial morphisms between them, i.e. C(Z1, Z2) = 0.

Proof. Decompose C(Z1, Z2) according to Definition 2.4. Both C(Z1, Z2)⊗ C(Z2, Z2)

and C(Z1, Z1)⊗C(Z1, Z2) occur as summands. But since C(Z1, Z1) ∼= C(Z2, Z2) ∼= C,
C(Z1, Z2)⊗ C2 is a subspace of C(Z1, Z2), which implies that C(Z1, Z2) ∼= 0.

Definition 2.8. For a simple object Z and any object X in a linear category, there
is a bilinear pairing:

(−,−) : C(Z,X)× C(X,Z)→ C

(f, g) · 1Z = g ◦ f

The − are placeholders.

Lemma 2.9. In a semisimple category, the bilinear pairing is non-degenerate.

Proof. Let g : X → Z such that all f : Z → X satisfy gf = 0. Then decompose 1X =∑
Z′,i α

i
Z′αZ′,i according to Definition 2.4, which implies g = g1X = g

∑
Z′,i α

i
Z′αZ′,i.

From the previous lemma we know that if Z and Z ′ are not isomorphic then gαiZ′ = 0,
therefore the sum reduces to g

∑
i α

i
ZαZ,i. But αiZ : Z → X, so by assumption gαiZ = 0

and therefore g = 0.
An analogous argument holds for f .

Monoidal categories, functors and natural transformations

Definition 2.10. A monoidal category consists of:

• A category C,
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• a functor −⊗− : C × C → C called the monoidal product,

• a unit object I called the monoidal identity,

• natural associativity isomorphisms αX,Y,Z : (X ⊗ Y )⊗ Z → X ⊗ (Y ⊗ Z) and
natural unit isomorphisms λX : I ⊗X → X and ρX : X ⊗ I → X subject to
coherence conditions which can be found e.g. in [Sel10, Section 3.1].

In a strict monoidal category, the coherence morphisms α, λ and ρ are all identity
morphisms.

If a monoidal category is also linear, ⊗ is assumed to be bilinear:

(f + g)⊗ h = (−⊗−)(f + g, h) = f ⊗ h+ g ⊗ h

f ⊗ (g + h) = (−⊗−)(f, g + h) = f ⊗ g + f ⊗ h (2.1.1)

In the graphical calculus for monoidal categories, morphisms f : X → Y are drawn
as boxes and lines in the plane, from the bottom to the top:

1X =

X

f = f

X

Y

f1 ⊗ f2 = f1

X1

Y1

f2

X2

Y2

(2.1.2)

The upward-pointing arrow on the lines is optional at this point but will be a useful
device when duals are introduced. The coherence morphisms are not shown in the
diagrammatic calculus. This is due to MacLane’s famous coherence theorem which
states that any composition of coherence morphisms between two given objects is
unique [ML63]. Hence there is no ambiguity in the way the coherence morphisms
are inserted. Also, the coherence theorem shows that every monoidal category is
monoidally equivalent to a strict monoidal category. Hence one can alternatively
view the diagrammatic calculus as determining morphisms in the equivalent strict
category. Throughout the paper, monoidal categories (possibly with extra structure)
will be indicated by the name of the mere category whenever standard notation for
all the additional data is used.

Definition 2.11. A monoidal functor is a tuple (F, F 2, F 0), where

11



• F : C → D is a functor between monoidal categories,

• F 2
X,Y : FX ⊗D FY ⇒ F (X ⊗C Y ) is a natural isomorphism,

• F 0 : ID → FIC is an isomorphism in D.

F 2 and F 0 are required to commute with the coherence morphisms, see e.g. [Sel10,
Section 3.1]. A monoidal natural transformation is a natural transformation
that commutes with F 0 and F 2.

Note that here F 2 and F 0 are assumed to be isomorphisms. Such functors are also
sometimes called “strong monoidal”.

Rigid and fusion categories

Definition 2.12. A duality is a quadruple (X, Y, ev : X⊗Y → I, coev : I → Y ⊗X)

satisfying the “snake identities”:

(ev⊗1X) ◦ (1X ⊗ coev) = 1X

(1Y ⊗ ev) ◦ (coev⊗1Y ) = 1Y (2.1.3)

In this situation, (X, ev, coev) is called the left dual of Y , and (Y, ev, coev) the right
dual of X. The morphisms ev and coev are called “evaluation” and “coevaluation”,
respectively. (In the context of adjunctions, they are also called “unit” and “counit”.)

Definition 2.13. A monoidal category with left (right) duals for every object is
called a left (right) rigid category. A rigid, or “autonomous” category is a
category that is left rigid and right rigid, i.e., every object has a left and a right dual.

Definition 2.14. Finitely semisimple rigid categories with simple I are known as
fusion categories.

In this work, each object X in a rigid category will have a particular choice of
duals. The right dual is denoted (X∗, evX , coevX) and the left dual (∗X, ẽvX , c̃oevX).
Pre- and postcomposing morphisms with ev and coev (resp. ẽv and c̃oev) defines
right (resp. left) dual contravariant op-monoidal functors −∗ (resp. ∗−). They are
contravariant in the sense that source and target are switched, and op-monoidal
in the sense that the monoidal product is reversed via canonical isomorphisms
δX,Y : (X ⊗ Y )∗ ∼= Y ∗ ⊗X∗.

12



Evaluation and coevaluation morphisms are drawn as caps and cups. The arrow in
the diagram is an orientation for the line that points to the right for the right duals.

evX =
X X∗

coevX =
X∗ X

ẽvX =
X∗X

c̃oevX =

∗XX

(2.1.4)

The arrow notation means that it is possible to regard the object X as a label on
the whole line (rather than one end of it). The convention at the ends of the line is
that an upward-pointing arrow indicates X and a downward-pointing arrow X∗.

In this graphical calculus, the snake identities now become:

= = (2.1.5)

Indeed, every identity of strings that is true as an isotopy in the plane is true for
morphisms in a rigid category.

Applying a monoidal functor (F, F 2, F 0) to the snake identities shows that dualities
are preserved, i.e. that the following morphism is an evaluation:

FX ⊗ FY
F 2
X,Y−−−→ F (X ⊗ Y )

F ev−−→ FIC
(F 0)

−1

−−−−→ ID

A similar statement holds for the coevaluation. Proving this requires all the naturality
axioms of a monoidal functor.
A standard result on dualities is that any two duals of a given object X are

canonically isomorphic. Applying this to F shows [Pfe09] that there are canonical
isomorphisms for the right duals

uX : F (X∗)→ (FX)∗ (2.1.6)

determined by F . These satisfy the defining equations

evFX =
(
F 0
)−1 ◦ F evX ◦F 2

X,X∗ ◦
(
1⊗ u−1

X

)
(2.1.7)

coevFX = (uX ⊗ 1) ◦
(
F 2
X∗,X

)−1 ◦ F coevX ◦F 0 (2.1.8)
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There are also separate canonical isomorphisms in a similar way for the left duals.

Pivotal and spherical categories

There exist rigid categories in which every left dual is also a right dual, i.e. X∗ ∼= ∗X.
Since there already exist canonical natural isomorphisms lX : X

∼=−→ (∗X)∗ and
l̃X : X

∼=−→ ∗(X∗) in any rigid category, isomorphisms between left and right duals
are equivalent to isomorphisms to the double dual, X ∼= X∗∗. Choosing such an
isomorphism naturally and monoidally for each object leads to the following definition.

Definition 2.15. A pivotal category is a right rigid category C (with chosen right
duals) together with a monoidal natural isomorphism i : 1C → −∗∗, the pivotal
structure. They are also called “sovereign” categories.

Lemma 2.16. A pivotal category is also left rigid, and thus rigid, with the following
choice of left dual:

∗X := X∗ (2.1.9)

ẽvX := evX∗ ◦ (1X∗ ⊗ iX) (2.1.10)

c̃oevX :=
(
i−1
X ⊗ 1X∗

)
◦ coevX∗ (2.1.11)

Definition 2.17. Left and right traces trL, trR : C(X,X) → C(I, I) ∼= C can be
defined with a pivotal structure:

trR(f) := f = evX ◦ (f ⊗ 1X∗) ◦ c̃oevX

= evX ◦
((
f ◦ i−1

X

)
⊗ 1X∗

)
◦ coevX∗ (2.1.12)

trL(f) := f = ẽvX ◦
(
1∗X ⊗ f

)
◦ coevX

= ev∗X ◦
(
1∗X ⊗ (iX ◦ f)

)
◦ coevX (2.1.13)

There are pivotal categories for which trR 6= trL for some objects. Spherical
categories eliminate this discrepancy.

Definition 2.18. A spherical category is a pivotal category with trR = trL for
every object. This trace will then simply be called tr. The pivotal structure of a
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spherical category is also called a “spherical structure”. The dimension of an object
X is defined as d(X) := tr (1X). It is also called “categorical” dimension, or, for
representations of Hopf algebras, “quantum” dimension.

The diagram for the dimension of an object is a circle. Note that because of
sphericality, it is not necessary to specify a direction on the circle.

d(X) = tr(1X) =

X

(2.1.14)

Note that the dimension of a simple object is known to be nonzero in fusion
categories [ENO05]. This follows from the facts that for a simple object Z the spaces
C(I, Z ⊗ Z∗) and C(Z ⊗ Z∗, I) have dimension 1, evaluations and coevaluation are
non-zero elements of these spaces, and Lemma 2.9.

Remark 2.19. The name “spherical” arises from the fact that the diagram of a
morphism can be embedded on the 2-sphere, and every isotopy on the sphere
amounts to a relation in the category. The additional axiom of a spherical category
corresponds to moving a strand “around the back” of the sphere. However, the
spherical axiom implies further identities that don’t come from isotopies on the
sphere.

Definition 2.20. Let X and Y be two arbitrary objects in a spherical fusion category.
The spherical pairing of two morphisms f : X → Y and g : Y → X is defined as

〈f, g〉 := tr(gf) = tr(fg) (2.1.15)

Lemma 2.21. The spherical pairing on a spherical fusion category is nondegenerate.

Proof. With the notation from Definitions 2.4 and 2.20, decompose f =
∑

Z,i β
i
ZαZ,i

and g =
∑

Z′,j δ
j
Z′γZ′,j. Then

〈f, g〉 =
∑

Z,i,Z′,j

tr
(
δjZ′γZ′,jβ

i
ZαZ,i

)
=
∑

Z,i,Z′,j

tr
(
γZ′,jβ

i
ZαZ,iδ

j
Z′

)
But γZ′,jβiZ is a map from Z to Z ′, and so is non-zero only if Z = Z ′. In this case, it
is equal to (βiZ , γZ,j) 1Z , thus the expression reduces to

=
∑
Z,i,j

(
βiZ , γZ,j

)
tr
(
αZ,iδ

j
Z

)
=
∑
Z,i,j

(
βiZ , γZ,j

) (
δjZ , αZ,i

)
d(Z)
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The dimensions d(Z) of simple objects are nonzero, hence with Lemma 2.9 this is
non-degenerate.

Definition 2.22. A pivotal functor F : C → D is a strong monoidal functor
preserving the pivotal structure (and thus the isomorphism between left and right
dual) up to canonical isomorphisms. More specifically, the following diagram must
commute:

FX (FX)∗∗

F (X∗∗) (F (X∗)) ∗

iFX

FiX u∗X

uX∗
(2.1.16)

In this diagram, u is the canonical isomorphism from (2.1.6).

Lemma 2.23. Pivotal functors preserve traces and therefore dimensions and the
spherical pairing. As elements of C ∼= C (IC, IC) ∼= D (ID, ID), it follows that for any
endomorphism f : X → X the following holds:

tr(f) = tr(Ff) (2.1.17)

Proof. Insert the isomorphism C(IC, IC)
F−→ D (FIC, F IC)

F 0◦−◦(F 0)
−1

−−−−−−−−→ D (ID, ID)

explicitly. It is now necessary to prove (F tr(f)) ◦ F 0 = F 0 ◦ tr(Ff).

F tr(f) ◦ F 0

= F
(
evX ◦

((
f ◦ i−1

X

)
⊗ 1X∗

)
◦ coevX∗

)
◦ F 0

= F evX ◦F 2
X,X∗ ◦

((
Ff ◦ Fi−1

X

)
⊗ 1F (X∗)

)
◦
(
F 2
X∗∗,X∗

)−1 ◦ F coevX∗ ◦F 0

= F 0 ◦ evFX ◦
((
Ff ◦ Fi−1

X ◦ u
−1
X∗

)
⊗ uX

)
◦
(
F 2
X∗∗,X∗

)−1 ◦ coevF (X∗)

= F 0 ◦ evFX ◦
((
Ff ◦ i−1

FX ◦ (u∗X)−1)⊗ uX) ◦ coevF (X∗)

= F 0 ◦ evFX ◦
((
Ff ◦ i−1

FX

)
⊗ 1(FX)∗

)
◦ coev(FX)∗

= F 0 ◦ tr(Ff)

Braided, balanced and ribbon categories

Definition 2.24. A braided monoidal category (or simply “braided category”)
is a monoidal category C with a dinatural isomorphism c (the “braiding”) with

16



components cX,Y : X⊗Y → Y ⊗X satisfying compatibility axioms with the monoidal
product, called the braid axioms, or hexagon identities:

(X ⊗ Y )⊗ Z

X ⊗ (Y ⊗ Z) (Y ⊗X)⊗ Z

(Y ⊗ Z)⊗X Y ⊗ (X ⊗ Z)

Y ⊗ (Z ⊗X)

αX,Y,Z cX,Y ⊗1Z

cX,Y⊗Z αY,X,Z

αY,Z,X 1Y ⊗cX,Z

(X ⊗ Y )⊗ Z

X ⊗ (Y ⊗ Z) (Y ⊗X)⊗ Z

(Y ⊗ Z)⊗X Y ⊗ (X ⊗ Z)

Y ⊗ (Z ⊗X)

αX,Y,Z c−1
Y,X⊗1Z

c−1
Y⊗Z,X αY,X,Z

αY,Z,X 1Y ⊗c−1
Z,X

(2.1.18)

As the name suggests, the graphical calculus for braidings consists of strings which
can cross each other:

cX,Y =

YX

c−1
Y,X =

X Y

(2.1.19)

The coherence isomorphisms α are invisible in the graphical calculus. Therefore,
the braid axioms become

Y ⊗ ZX

=

Y ZX X Y ⊗ Z

=

X Y Z

(2.1.20)

Definition 2.25. A balanced monoidal category is a braided category C with a
natural isomorphism θ : 1C ⇒ 1C, the twist, satisfying the balance equation:

θX⊗Y = cY,X ◦ cX,Y ◦ (θY ⊗ θX) (2.1.21)

(This term should not be confused with the unrelated concept of a “balanced
category”, where every morphism that is mono and epi is also an isomorphism.)
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Theorem 2.1. In a rigid, braided category, there exists a (noncanonical) bijection
between twists satisfying the balance equation and pivotal structures. For a given
pivotal structure, one possible balanced structure can be defined as:

θX :=

i−1
X

X

(2.1.22)

For further details, consult e.g. [Sel10, Lemma 4.20], and the sources cited therein.

There are other possibilities to construct a pivotal structure from a balanced
structure, but they will coincide in the case of the following definition.

Definition 2.26. A ribbon category is a balanced monoidal, rigid category satis-
fying the ribbon equation:

θX∗ = θ∗X (2.1.23)

Ribbon categories are also called “tortile” categories.

The graphical representation of the twist is usually a ribbon that has been twisted
by 2π. The thickening to two-dimensional ribbons is meant to express the fact
that the twist cannot be undone by an ambient isotopy in three-dimensional space.
In two-dimensional diagrams, ribbons can still be drawn as lines – possibly with
crossings – when the blackboard framing is implicitly assumed. After recognising that
the pivotal structure is a coherence and can be omitted from (2.1.22), the diagram
for the twist becomes:

θX =

X

(2.1.24)

The graphical representations of the balance equation and the ribbon equation are
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thus:

X ⊗ Y

=

X Y X∗

=

X∗

=

X∗

(2.1.25)

The last equality introduced the graphical representation for θ∗X .

Definition 2.27. Ribbon fusion categories are simply ribbon categories that are
also fusion categories. They are also called “premodular categories”.

Remark 2.28. Ribbon categories have a canonical pivotal structure that is spherical.
The spherical condition is a consequence of (2.1.23). As a partial converse, the twist
of a braided spherical category is ribbon structure if it is fusion. For more details see
[Dri+10, definition 2.29] and the references therein.

Symmetric categories

Definition 2.29. A braided category is called symmetric iff cX,Y = c−1
Y,X . A

symmetric category which is also fusion is called a symmetric fusion category.

Remark 2.30. As a consequence of (2.1.21), a ribbon category is symmetric if the
twist is trivial, although there exist symmetric ribbon categories with non-trivial
twist.

If the braiding is symmetric, over- and underbraiding are set equal in the diagram-
matic calculus:

cX,Y = c−1
Y,X =

YX

(2.1.26)

Theorem 2.31 (After Deligne, [Del02]). In a symmetric fusion category, dimensions
of simple objects are integers. If the twist is trivial and all dimensions are positive,
then there exists a (pivotal) fibre functor to vector spaces, and the symmetric fusion
category is equivalent to the representations of the finite automorphism group of the
fibre functor.
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Part II

Dichromatic state sum models for
four-manifolds from pivotal functors
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This part is based primarily on a joint article with my supervisor John Barrett
[BB16].

3 Introduction

The Crane-Yetter model [CYK97] is a state sum invariant of four-dimensional
manifolds that determines a topological quantum field theory (TQFT). The purpose
of this part is to give a more general construction that puts the Crane-Yetter model in
a wider context and allows the exploration of new models, as well as a more thorough
understanding of the Crane-Yetter model itself. There is interest in four-dimensional
TQFTs from solid-state physics, where they allow the study of topological insulators,
for example in the framework of Walker and Wang [WW12], which is expected to be
the Hamiltonian formulation of the Crane-Yetter TQFT. The Crane-Yetter model is
also the starting point for constructing spin foam models of quantum gravity [BC98].
Therefore the main motivation for this paper is to provide a firmer and more unified
basis for a variety of physical models.

A state sum model is a discretised path integral formulation for a lattice theory. In
order to calculate the transition amplitude from one lattice state to another (possibly
on a different lattice), a cobordism, or spacetime, from the initial to the final lattice
is discretised using a triangulation or a cell complex. Then the amplitude is the sum
of a weight function over states on the discretised cobordism. A state is typically a
labelling of the elements of the discretisation with some algebraic data, for example
objects and morphisms in a certain category.
In a topological state sum model, the sum over all states is independent of the

particular discretisation chosen, and thus gives rise to a TQFT. The weight function
corresponds to an action functional and is calculated locally, for example per simplex
if the discretisation is a triangulation. This property is motivated by the physical
assumption of the action being local, and is expected to have the far-reaching
mathematical consequence that the resulting TQFT is ‘fully extendable’, which
means that it is well-defined on manifolds with corners of all dimensions down to
zero.

Topological state sum models are an approach for quantum gravity. The Turaev-
Viro state sum is an excellent model of three-dimensional Euclidean quantum gravity
([Bar95, Section V.B] and [Bar03]). As Witten famously remarks [Wit89, Section
3], one would expect any manifestly diffeomorphism-covariant theory to give rise to
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a topological quantum theory. So far, no topological state sum has modelled four-
dimensional quantum gravity in a satisfactory way. The most prominent topological
state sum model remains the Uqsl(2)-Crane-Yetter state sum; however this is not
considered a gravity model. It was shown to reduce to the signature [CYK97] and
the Reshetikhin-Turaev theory on the boundary [BFG07]. As a consequence of
this, the dimensions of the state spaces attached to the boundary manifolds are
only one-dimensional, whereas in a gravity theory one would expect a large state
space containing many graviton modes. The more general framework developed here
suggests some different Crane-Yetter type models that may be related to approaches
such as teleparallel gravity [BW12].

3.1 The Crane-Yetter invariant and its dichromatic

generalisation

In three-dimensional topology, the Turaev-Viro state sum invariant distinguishes even
some homotopy-equivalent three-manifolds: By [Sok97, Proposition 2], the lens spaces
L(7, 1) and L(7, 2), which are homotopy equivalent, but not homeomorphic, have
different values for the Turaev-Viro invariant. However the Crane-Yetter invariant of
four-manifolds for modular categories, as it was originally defined, is just a function
of the signature and the Euler characteristic of the manifold [CYK97, Proposition
6.2].

A closer look at the construction reveals a possible explanation why this is the case.
By the Morse theorem, smooth manifolds admit handle decompositions. (Additionally,
there is a canonical handle decomposition determined by any triangulation, by
thickening the dual complex.) Different handle decompositions of the same manifold
can be related by a sequence of handle slides and cancellations. Thus, one can
construct a manifold invariant by assigning numbers to handle decompositions; if
the numbers do not change under the handle moves, they define an invariant.

Handle decompositions can be described by Kirby diagrams. These are framed links
where the components of the link represent the 1- and 2-handles. For the modular
Crane-Yetter invariant, the components of the link are each labelled by the Kirby
colour of the ribbon fusion category C that determines the invariant. By the universal
property of the tangle category [Shu94], this can be interpreted as diagrammatic
calculus in C. Evaluating the diagram and multiplying by a normalisation gives the
invariant.
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Since the 2-handles are treated in the same way as the 1-handles, there is a
redundancy in the construction of the modular Crane-Yetter invariant: it does
not change if all 1-handles are replaced by 2-handles in the link diagram. But
such a replacement radically changes the topology of the manifold and ensures,
for example, that every manifold has the same modular Crane-Yetter invariant as
a simply-connected one. Consequently, the invariant cannot even detect the first
homology.
The solution is to define invariants that label the 1- and 2-handles with different

objects in the category. Petit’s “dichromatic invariant” [Pet08] does exactly this: in
addition to the ribbon fusion category, one also chooses a full fusion subcategory and
labels the 2-handles with the Kirby colour of the subcategory. Whether this change
actually improves the invariant remained unstudied at the time. It will be shown in
Section 8.2 that it does indeed lead to a stronger invariant that is sensitive to the
fundamental group and can thus distinguish manifolds with the same signature and
Euler characteristic. Now one can indeed pinpoint the improvement of the invariant
as due to the differing labels on 1-handles and 2-handles. As a bonus, the general
Crane-Yetter invariant is recovered as a special case of the dichromatic invariant.
Previously, no description of it in terms of Kirby calculus was known for nonmodular
ribbon categories.

A generalisation of the dichromatic invariant is presented here and translated into
a state sum model. Instead of a ribbon fusion subcategory, the generalisation is to
use a pivotal functor from a spherical fusion category to a ribbon fusion category.
The 1-handles are still labelled with the Kirby colour of the target category, but the
2-handles are labelled with the Kirby colour of the source category, with the functor
applied to it.

3.2 Outline

In Section 4, the graphical calculus of spherical and ribbon fusion categories is
recalled. Various notational conventions are established.
In Section 5, the sliding lemma from spherical and ribbon fusion categories is

generalised. The original lemma allows for sliding the identity morphism of any
object over an encirclement by the Kirby colour of the category. The generalised
lemma generalises this to an encirclement by the image of a Kirby colour under a
pivotal functor. This generalisation will be a key step in the proof of invariance
(Section 5.3) of the generalised dichromatic invariant (Definition 5.5) of smooth,
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oriented, closed four-manifolds. The section concludes with some general properties
of the invariant and a motivating special case, Petit’s dichromatic invariant (Example
5.15).
Many functors lead to the same invariant, and a general situation in which this

is the case is presented in Section 6. This often leads to a simplification of the
invariant, especially when the functor and both categories are unitary, or when the
target category is modularisable.

If the target category of the functor is modularisable, which is often the case, the
generalised invariant can also be cast in the form of a state sum. In Section 7, this
state sum formula (7.2.5) is derived using the chain mail technique.

Section 8 is a non-exhaustive survey of several different examples of the generalised
dichromatic invariant. The Crane-Yetter state sum is recovered as a special case,
both for modular and nonmodular ribbon fusion categories. For the nonmodular
Crane-Yetter invariant, a chain mail construction was not previously known. A
further special case is Dijkgraaf-Witten theory without a cocycle, implying that the
invariant can be sensitive to the fundamental group. The Dijkgraaf-Witten example
is then generalised to group homomorphisms.

There is a discussion in Section 9 of how the present framework could connect to
Walker-Wang models and state sum models used in the study of quantum gravity
such as spin foam models. Relations to Cartan geometry and teleparallelism are
discussed as well.
Finally, a handy overview of the different known special cases of the generalised

dichromatic invariant is given as a table in Section 10, together with some comments
on the results.

4 Preliminaries

4.1 Diagrammatic calculus on spherical fusion categories

Definition 4.1. For a fusion category C, let the fusion algebra C [C] be the
complex algebra generated by its objects, modulo isomorphisms and the relations
X ⊕ Y = X + Y and X ⊗ Y = XY .

Remark 4.2. If C is braided, C [C] is commutative.

Definition 4.3. By a handy generalisation of notation, closed loops involving only
(extra-)natural transformations α can also be labelled with elements of the fusion
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algebra, in this context called colours, instead of mere objects. The evaluation of a
diagram with a linear combination of objects is defined as the sum of the evaluations
of the diagrams with the individual objects:

X :=
∑
i

λiXi (4.1.1)

α

X

:=
∑
i

λi αXi

Xi

(4.1.2)

Since braiding and twist are natural transformations, colours can be used in the
diagrammatic calculus.

Definition 4.4. The Kirby colour ΩC of a spherical fusion category C is defined
as the sum over the simple objects in ΛC weighted by their dimensions:

ΩC :=
∑
X∈ΛC

d(X)X (4.1.3)

Its dimension d(ΩC) =
∑

X∈ΛC
d(X)2 is known as the global dimension of the

category. It is always positive, since the field C has characteristic zero [ENO05].

The following two lemmas are well-known, e.g., in [CYK97, Section 2].

Lemma 4.5 (Schur’s lemma). Any endomorphism f : X → X of a simple object
with non-zero dimension satisfies:

f = 1X ·
tr(f)

d(X)
(4.1.4)

Proof. Since X is simple, C(X,X) ∼= C, so every endomorphism is a multiple of
the identity. Taking the trace on both sides of the equation f = λ1X yields the
result.

Lemma 4.6 (Insertion lemma). For any object X in a spherical fusion category, its
identity morphism can be decomposed into a weighted sum of identities of simple
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objects Z:

X =
∑
Z∈ΛC

∑
ιZ,i∈C(X,Z)

〈ιiZ ,ιZ,j〉=δi,j

d(Z)

ιZ,i

ιiZ

X

Z

X

(4.1.5)

The ιZ,i form a basis of C(X,Z) to which the ιjZ ∈ C(Z,X) are the dual basis with
respect to the spherical pairing 〈−,−〉 defined in (2.1.15).

Proof. The definition of semisimplicity 2.4 implies that

1X =
∑
Z,i

βiZιZ,i (4.1.6)

for some βiZ ∈ C(Z,X). Then inserting this equality into
〈
ιZ,j, 1Xι

k
Z

〉
shows that

βiZ = d(Z) ιiZ .

Remark 4.7. The insertion lemma is a generalisation of the fact from linear algebra
that any vector can be decomposed uniquely into a linear combination of basis
vectors.

Due to its similarity to (4.1.2), it is common to say that (the identity of) the Kirby
colour ΩC =

∑
Z∈ΛC

d(Z)Z can always be inserted in X’s identity. This explains the
particular name of the lemma.

Ribbon fusion categories

This subsection introduces some notation and known lemmas in ribbon fusion
categories. These are also known as premodular categories.

Definition 4.8 (Graphical calculus for links). Let L be an oriented framed link with
a partition of its components into N sets. Choose a regular diagram of the link in
the plane such that the blackboard framing from the diagram matches the original
framing of the link. Given a labelling (X1, X2, . . . , XN ) of the sets with colours from
a ribbon fusion category C, label the link components in each set with the colour of
the set and interpret the diagram as a morphism in C, in the following way: Insert
identity morphisms for vertical lines, braidings for crossings, evaluations for maxima
of lines and coevaluations for minima. They are composed and tensored according
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to the vertical and horizontal structure of the diagram. The whole procedure is
explained rigorously in [Shu94] and [Sel10].
Since a link has no open ends, the resulting morphism will be an endomor-

phism of I, which is essentially a complex number. This number is denoted as
〈L(X1, X2, . . . , XN)〉 and called the evaluation of the labelled link diagram (not
to be confused with the evaluation morphisms evX). A labelled link diagram will
sometimes be used interchangeably with its evaluation.

Remarks 4.9. Note that the choice of diagram for the framed link doesn’t matter as
two diagrams only differ by isotopies and (second and third) Reidemeister moves,
which amount to identities (e.g. naturality squares or axioms like the snake identity)
in the category.
It is necessary that C is ribbon since this ensures that the framing coefficients of

the link are translated into twists of C.

Definition 4.10. An object X is called transparent (or “central”) in C if it braids
trivially with any object Y in C, that is, cY,X ◦ cX,Y = 1X⊗Y . The graphical
representation of this condition is found in (4.1.7).

The full symmetric monoidal subcategory C ′ ⊂ C with all transparent objects of C
is called the symmetric centre (or “centraliser”) of C, as for example in [Mü03b] or
[Dri+10]. The set of equivalence classes of simple transparent objects in C is then
ΛC′ . Dotted lines represent transparent objects.

X ∈ ob C ′ ⇐⇒

YX

=

YX

∀Y ∈ ob C (4.1.7)

Definition 4.11. Assume X is a colour X = λ1X1 +λ2X2 + · · ·+λNXN with all Xi

simple, further assume that X1 to Xk are transparent and Xk+1 to XN are not. Then
define the transparent colour X ′ := λ1X1 +λ2X2 + · · ·+λkXk+0Xk+1 + · · ·+0XN .

Definition 4.12. The transparent Kirby colour is defined as follows.

ΩC′ = Ω′C =
∑
X∈ΛC′

d(X)X (4.1.8)
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In the same manner, the transparent dimension is defined:

d(ΩC′) =

ΩC′

=
∑
X∈ΛC′

d(X)2 (4.1.9)

Definition 4.13. A category is calledmodular if it has ΛC′ = {I}, i.e. the monoidal
identity I is the only transparent object.

The transparent dimension of a modular category is therefore 1. Note that the
multifusion case, where I is not a simple object, is excluded here.

Remark 4.14. An object that is not transparent in C can still be transparent in a
subcategory B ⊂ C.

Encirclement

The technique of encirclement allows for many elegant and powerful calculations.
It is indispensable when defining invariants derived from ribbon fusion categories
and Kirby diagrams. Its power comes from the so-called killing property. This
is also known as the Lickorish encircling lemma [Lic93], see also [Rob95]. It can
be generalised from modular to ribbon fusion categories [Bru00, Lemma 1.4.2, in
different notation].

Lemma 4.15 (Killing property). In a ribbon fusion category, the following holds
for any object:

ΩC

X

=

X ′

ΩC

(4.1.10)

Let in particular X be simple. Then X ′ = X if it is transparent, and 0 otherwise. In
the latter case one says that X is “killed off”.

Note that the orientation for the circle containing ΩC does not need to be specified
since the colour is self-dual.

The combination of the killing property 4.15 and the insertion lemma 4.6 gives
the explicit morphism of an arbitrary object encircled with the Kirby colour.
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Lemma 4.16 (Cutting strands). Let X be an arbitrary object of a modular category
C. Then:

ΩC

X

=
∑
Z∈ΛC

∑
ιi∈C(X,Z)

〈ιi,ιj〉=δi,j

d(Z)

ιi

ιi

X

ΩC
Z =

∑
ιi∈C(X,I)
〈ιi,ιj〉=δi,j

d(ΩC)

ιi

ιi

X

(4.1.11)

The last step uses the fact that in a modular category, I is the only transparent
object.

Lemma 4.17 (Cutting two strands). Let Z1, Z2 be simple objects of a modular
category C. Then as a special case of the previous lemma:

ΩC

Z1 Z2

= δZ∗1 ,Z2d(Z1)−1 d(ΩC)

Z1 Z2

(4.1.12)

To see the prefactors, observe that C(Z1 ⊗ Z2, I) ∼= C(Z2, Z
∗
1 ). This is isomorphic to

C if Z∗1 ∼= Z2, and 0 otherwise. If Z∗1 ∼= Z2, then C(Z1 ⊗ Z2, I) is spanned by evZ1 .
Since c̃oevZ1 ◦ evZ1 = d(Z1), the dual basis element must be c̃oevZ1 · d(Z1)−1.

4.2 4-Manifolds and Kirby calculus

An extensive treatment of these topics is found in [GS99], [Akb16] and [Kir89]. The
essential definitions and facts are highlighted here.

Handle decompositions

Let Dk denote the closed k-disk, or k-ball. The space Dk ×D4−k, k ∈ {0, 1, 2, 3, 4},
is called a 4-dimensional k-handle. All handles have the same underlying topological
space, but they differ in the way they are attached to each other. The boundary
of a k-handle is ∂

(
Dk ×D4−k) = Sk−1 ×D4−k ∪Dk × S3−k, where S−1 = ∅. The

first component of the boundary is called the attaching boundary or “attaching
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k Space Attaching boundary Remaining boundary

0 D0 ×D4 ∅ S3 ∼= R3 ∪ {∞}
1 D1 ×D3 S0 ×D3 ∼= {−1, 1} ×D3 D1 × S2 ∼= [−1, 1]× S2

2 D2 ×D2 S1 ×D2 D2 × S1

Table 4.1: Some relevant special cases of 4-dimensional k-handles and their boundaries.

region”, the second component the remaining boundary or “remaining region”.
Some examples are shown in Table 4.1.
Smooth manifolds admit handle decompositions. A k-handle can be attached to

a manifold with boundary by embedding its attaching region into the boundary of
the manifold. A k-handlebody is obtained by attaching a disjoint union of k-handles
to a k − 1 handlebody, and is thus a union of 0-, 1-, . . . and k-handles. Note that
0-handles have no attaching region, and a 0-handlebody is just a disjoint union of
0-handles, which are D4s. Every n-manifold can be decomposed into handles, that
is, it is diffeomorphic to an n-handlebody.
The handle decomposition is by no means unique. Two handle decompositions

of diffeomorphic manifolds are always related by “handle moves”, which are either
cancellations of a k- and a (k + 1)-handle, or a slide of a (k +m)- over a k-handle.

For a connected manifold it is always possible to arrive at a handle decomposition
with exactly one 0-handle by cancelling 0-1-handle pairs. Similarly, for a closed
connected n-manifold it is always possible to have exactly one n-handle by cancelling
(n− 1)-n-handle pairs.

Kirby diagrams and dotted circle notation

For the 2-handlebody of a four-manifold, one can specify the handles and their
attaching maps by identifying the boundary of the single 0-handle with R3 ∪∞ and
drawing pictures of the attaching regions of the 1- and 2-handles. This is explained
in [GS99, Section 5.1]. An attachment of a 1-handle amounts to choosing two 3-balls
D3 × {−1, 1} ∼= D3 tD3 ⊂ R3, which are identified by an orientation-reversing map.
A 2-handle attachment is an embedding of D2×S1, which is, up to isotopy, a framed
embedding of S1, i.e. a framed knot. When a part of the 2-handle is attached to
a 1-handle, the S1 of the 2-handle will enter one of the 3-balls of the 1-handle and
leave the other 3-ball with which the former has been identified. The diagram of the
attaching regions in R3 is called a Kirby diagram. Some examples can be found
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(a) A 1-handle is attached to a 0-handle
by glueing the attaching boundary of the
1-handle ({−1, 1} ×D3) to the boundary of
the 0-handle (S3 ∼= R3 ∪ {∞}).

(b) A single 2-handle (possibly knotted or
framed) cancels a 1-handle if it is not linked
to any other handles. (The 1-handle may
be linked to other handles.)

(c) A Kirby diagram of a handle decomposi-
tion of I ×RP 3, with a single 1-handle and
a single 2-handle. To convert it into an Ak-
bulut diagram, choose a cancelling 2-handle
(represented by a dashed line).

(d) In an Akbulut diagram, or special framed
link, 1-handles are represented by dotted
circles.

g2

g−1 g

(e) A Kirby diagram gives a presentation of
the fundamental group. Here, π1

(
I ×RP 3

)
is generated by g and the relation g2 = 1.

X

Y

(f) An oriented Akbulut diagram can be
labelled with objects from a ribbon fusion
category, and subsequently interpreted in its
diagrammatic calculus.

Figure 4.1: Kirby diagrams and Akbulut diagrams

in Section 8.2.
A theorem ensures that for a closed four-manifold M , specifying the 2-handlebody

of a handle decomposition determines M up to diffeomorphism, i.e. any way of
adding the 3- and 4-handles will yield the same manifold. Thus a closed manifold is
specified uniquely (up to diffeomorphism) by its Kirby diagram.
The dotted circle notation for 1-handles developed by Akbulut is sometimes

more convenient. Instead of adding a 1-handle, one can add a cancelling 1-2-handle
pair (as shown in Figures 4.1b and 4.1c) and, after adding all further 2-handles,
remove the cancelling 2-handle. In the diagram, the step of adding the cancelling
pair does not require any notation because it does not change the topology. However
one needs a notation to indicate how the cancelling 2-handle is removed [Kir89,
Section 1.2]. Recall that a 2-handle is attached by D2 × S1 ⊂ D2 × D2 and so
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the remaining part of the boundary is S1 ×D2. This thickened (0-framed) circle is
sufficient to indicate the 2-handle and is included in the diagram to represent the
1-handle it cancels. To distinguish the 1- and 2-handles, dots are drawn on those
circles representing 1-handles, as in Figure 4.1d.

In Section 5.3, it will be detailed which moves one can perform on handle decompo-
sitions without changing the diffeomorphism class of the manifold. Further examples
can be found in Section 8.2.
Note that the sublink consisting of only dotted circles is an unlinked union of

0-framed unknots, but 2-handle circles can be linked with each other. The 2-handle
circles can also be linked with the dotted circles; this happens whenever a 2-handle
runs over a 1-handle. Links of this type are called special framed links.
To produce an Akbulut picture from a Kirby picture [GS99, Section 5.4], take

the two 3-balls of a 1-handle. The cancelling 2-handle connects them with a framed
interval, or an embedding of D2 × [−1, 1], with the ends on the 3-balls. Now instead
of drawing the balls, draw the dotted circle S1 × {0} ⊂ D2 × [−1, 1]. A 2-handle
running over this 1-handle is then drawn as a continuous line going through the
dotted circle.

Definition 4.18 (Evaluation of Akbulut pictures). The dotted circle notation of
a handle decomposition of a closed, oriented four-manifold will be important in
the definition of the invariant. The dots specify a partition of the special framed
link diagram L in two sublinks, corresponding to the 1-handles and the 2-handles,
respectively. After arbitrarily chosing orientations on each S1, the two sublinks can
be labelled with two colours X and Y of a ribbon fusion category. (The colours
then need to be self-dual such that the chosen orientations don’t matter.) Each
dotted link component (1-handle) is labelled with the colour X and each of the
remaining components (2-handles) is labelled with Y , and the dots can then be
removed. The labelled link is denoted L(X, Y ). As in Definition 4.8, the evaluation
is then 〈L(X, Y )〉.

Note that the relation between the two graphical notations for 1-handles mimicks
the diagrammatic representation of Lemma 4.16. This will be exploited in Section
6.3, where a definition of the invariant in terms of the Kirby diagram is given.
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The fundamental group

A Kirby diagram for a manifold M gives rise to a presentation of its fundamental
group π1(M). Each 1-handle is a generator, while the 2-handles are the relations.

More specifically, choosing a basepoint in the 0-handle and an arbitrary direction
on each 1-handle, there is a homotopy class of noncontractible curves going through
a 1-handle once. A 2-handle gives a way of contracting the S1 on its own attaching
region, which is drawn in the Kirby diagram. Thus the composition of the curves
going through the 1-handles along which the 2-handle is attached can be equated
with the contractible curve.

This can be visualised as follows. Each 1-handle is associated to a generator.
One of its corresponding 3-balls is labelled with the generator and the other with
its inverse, thus fixing a direction on the 1-handle. For every circle coming from a
2-handle, choose an orientation and construct a word of generators by going once
along the circle, writing down the generator (or its inverse) when entering a 1-handle
through a 3-ball. (No action needs to be taken when leaving a ball.) The resulting
word is then a relation in the presentation of the fundamental group. An example is
given in Figure 4.1e.

5 The generalised dichromatic invariant

5.1 The generalised sliding property

Lemma 5.1. In a ribbon fusion category C, the sliding property (in its original form
due to Lickorish [Lic93]) holds:

X

ΩC
= ΩC

X

(5.1.1)
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Proof.

X

ΩC
=

X

ΩC
= ΩC

X

= ΩC

X

The killing property 4.15 has been used twice.

As the diagrams suggest, the sliding property will later ensure that the invariant
doesn’t change under handle slides. To label 2-handles differently from 1-handles,
it is necessary to generalise the sliding property of Lemma 5.1 to ensure invariance
under the 2-2-handle slide. The idea will be to label the 2-handles with FΩC, where
F is a suitable functor. Then encirclements with FΩC must also satisfy a sliding
property.

Lemma 4.6, which states that the Kirby colour can be inserted into the identity of
any object, can be generalised.

Lemma 5.2 (Generalised insertion lemma). Let F : C → D be a pivotal functor, and
X an object in C. Then the identity of FX decomposes over FΩC =

⊕
X d(X)FX.

In this situation, we say that FΩC can be “inserted” into the identity of FX.

Proof. Apply F to both sides of (4.1.5) in the insertion lemma. Since pivotal functors
preserve traces, they also preserve (categorical) dimensions and dual bases.

The sliding property can also be generalised in a similar way.

Lemma 5.3 (Generalised sliding property). Let F : C → D be a pivotal functor
from a spherical fusion category to a ribbon fusion category. Then the following
generalisation of the sliding property holds for all objects X ∈ ob C, A ∈ obD:

FX

FΩC

A

= FΩC

FX

(5.1.2)
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Proof. The proof proceeds diagrammatically.

FX

FΩC

A

=
∑
Y ∈ΛC

d(Y )

FX

FY

A

Using the definition of ΩC. (5.1.3)

=
∑

Y,Z∈ΛC
ιi∈C(Z,X⊗Y ∗)
〈ιi,ιj〉=δi,j

d(Y ) d(Z)
Fιi

Fιi

FX

FZ

A

FY
Insertion of FΩC, according to
Lemma 5.2.

(5.1.4)

=
∑

Y,Z∈ΛC
ιi∈C(Z,X⊗Y ∗)
〈ιi,ιj〉=δi,j

d(Y ) d(Z)

Fιi

Fιi

FZ

AFX

FY
Naturality of the braiding as iso-
topy.

(5.1.5)

=
∑

Y,Z∈ΛC
ι̃i∈C(Y,Z∗⊗X)

〈ι̃i,ι̃j〉=δi,j

d(Y ) d(Z)
F ι̃i

F ι̃i

FZ

AFX

FY

Isomorphism ιi 7→ ι̃i between
C(Z,X ⊗ Y ∗) and C(Y, Z∗⊗X)

given by composition with eval-
uation and coevaluation. The ι̃
form dual bases because of pi-
votality of F and sphericality of
D. (Explained below.)

(5.1.6)
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=
∑
Z∈ΛC

d(Z)
FZ

AFX

Inverse insertion of FΩC. Note
that the two FΩC’s have
swapped roles during the pro-
cess.

(5.1.7)

=

FΩC

AFX

(5.1.8)

The non-obvious part of the calculation is (5.1.6). The assumption that {ιi} and {ιi}
form dual bases with respect to the spherical pairing looks like this in the graphical
calculus:

ιi

ιj
= δi,j (5.1.9)

It is necessary to show that this property is also true for {ι̃i} and {ι̃j}. After
composing the Fιi and Fιj with evaluations and coevaluations, this again results in
F applied to morphisms {ι̃i} and {ι̃j} since F is monoidal and therefore preserves
duals (up to the natural isomorphism F 2 which is implicit here):

F ι̃i

FY

FZFX

:= Fιi

FZFX

FY

F ι̃j

FY

FZFX

:= Fιj

FZFX

FY

(5.1.10)

It is necessary to show now that {ι̃i} and {ι̃j} are dual bases again. But this follows
from pivotality of F (preservation of traces) and sphericality of D:

ι̃i

ι̃j
= F

 ι̃i

ι̃j

 pivotality
=

F ι̃i

F ι̃j
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(5.1.10)
=

Fιi

Fιj
sphericality

=
Fιi

Fιj
=

Fιi

Fιj

pivotality
= F

 ιi

ιj

 =
ιi

ιj
= δi,j (5.1.11)

In words, pivotal functors preserve dual bases (with respect to the spherical pairing).
As is necessary, the lemma holds also if the encircling is not an unknot: Braidings

and twists are natural transformations and can therefore be pushed past the F ι̃i, so
they will be passed on to the new encircling morphism and the slid handle. Assume
e.g. that after (5.1.6), there still is a twist on FY . Then the right hand side of the
diagram is:

F ι̃i

F ι̃i

FY =

F ι̃i

F ι̃i

(5.1.12)

This argument can be easily generalised to braidings.

Remark 5.4. It is remarkable that it is not necessary to demand C is ribbon, neither
that F is braided or ribbon. In fact, the proof this lemma stems from a better-known
sliding lemma in spherical fusion categories used for example in understanding the
Hilbert spaces assigned to surfaces in the Turaev-Viro-Barrett-Westbury-TQFT
[Kir11, Corollary 3.5].
For F the identity of a ribbon fusion category, the sliding lemma would have

followed directly from the killing property, as demonstrated in Lemma 5.1. But if F
is not the identity, it is unclear whether there is an analogue to the killing property.

5.2 The definition

The definition of the generalised dichromatic invariant can now be given.

Definition 5.5. Assume the following:
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• Let C be a spherical fusion category.

• Let D be a ribbon fusion (premodular) category with trivial twist on all
transparent objects.

• Let F : C → D be a pivotal functor.

• Let L be the special framed link obtained from a handlebody decomposition of
a smooth, oriented, closed four-manifold M .

Then the generalised dichromatic invariant of L associated with F is defined
as:

IF (L) :=
〈L (ΩD, FΩC)〉

d(ΩC)
h2−h1 (d(ΩD) d

(
(FΩC)

′))h1 (5.2.1)

Here, hi is the number of i-handles of the handle decomposition, or, the num-
ber of components in the first, respective, second set of the special framed link.
〈L (ΩD, FΩC)〉 is the evaluation of the special framed link diagram as an endomor-
phism of ID, or equivalently a complex number, as in Definition 4.18. The 1-handles
are labelled with ΩD, the 2-handles with FΩC. (FΩC)

′ is the transparent part of
FΩC, as in Definition 4.11.

Throughout, IF (M) is written instead of IF (L). This will be justified in the next
subsection, where it is shown that IF does not depend on the choice of L and is in
fact an invariant of the manifold M .

Remark 5.6. It might be counter-intuitive that the unknotted, 0-framed, unlinked
1-handles are labelled by ΩD, while the 2-handles are labelled by FΩC, but D is the
ribbon category (which has algebraic counterparts of knots and framings) and C is
only spherical. But this is indeed a valid definition, while a functor in the other
direction does not lead to an invariant in an obvious way.

Note also that FΩD does not depend on the monoidal coherences F 2 and F 0. Two
functors with different coherences will give the same invariant. Furthermore, any
two isomorphic functors will also yield the same invariant.

From now on, the conditions in the definition will be assumed, unless stated
otherwise.
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5.3 Proof of invariance

Lemma 5.7 (Multiplicativity under disjoint union). For two links L1 and L2, IF is
multiplicative under disjoint union t:

IF (L1 t L2) = IF (L1) · IF (L2) (5.3.1)

Proof. Evaluation of the graphical calculus is multiplicative under disjoint union:
A link corresponds to an endomorphism of C, so two links correspond to an en-
domorphism of C ⊗ C. The evaluation is a monoidal functor with coherence iso-
morphism − · − : C⊗ C→ C, so the numerator of IF is multiplicative. Obviously,
hi(L1 t L2) = hi(L1) + hi(L2), so the denominator is multiplicative as well.

Given two different handle decompositions of a manifold can be transformed into
each other by a series of handle slides and handle cancellations, as described for
example in [GS99, Theorem 4.2.12]. The relevant moves for link diagrams of four-
manifolds have been studied in [Sá79] and are explained further in [GS99, Section
5.1]. They are shown in Table 5.1.

Theorem 5.8 (Independence of handlebody decomposition). The generalised dichro-
matic invariant is independent of the handlebody decomposition and is thus an
invariant of smooth four-manifolds.

Proof. It is only necessary to check invariance of IF under each of the handle moves
in order to prove the theorem.

• Invariance under the 1-1-handle slide and the 2-1-handle slide are ensured by
the sliding property 5.1. Since 1- and 2-handles are labelled with objects in D,
they can slide over a 1-handle which is labelled with ΩD.

• Invariance under the 2-2-handle slide is ensured by the generalised sliding
property 5.3. Every object in the image of F can slide over FΩC, so since
2-handles are labelled with FΩC, they can slide over each other.

• The 1-2-handle cancellation leaves IF invariant because of its normalisation.
Assume that there is a linked pair of a 1-handle and a 2-handle that is not
linked to the rest of the diagram. Then it will be shown that IF does not change
if the pair is removed from the diagram. The 2-handle can be knotted, as is
illustrated here with a trefoil knot. Since IF is multiplicative under disjoint
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Handle move before after

1-1-handle slide

2-1-handle slide

2-2-handle slide

1-2-handle cancellation (empty)

2-3-handle cancellation (empty)

Table 5.1: Handle moves and cancellations for 4-handlebodies. As usual, a dot denotes
a 1-handle. The grey area stands for an arbitrary number of 1- and 2-handles passing
through. Note, that for the 1-2-handle cancellation, the 2-handle may be knotted
arbitrarily, but not linked to other handles. In the 2-2-handle slide, the 2-handle on
the right hand side can be arbitrarily knotted, in which case the sliding handle needs
to follow the blackboard framing.

union of link diagrams, it only remains to show that the invariant of the pair of
handles evaluates to 1. The numerator is just the evaluation of the graphical
calculus:

〈 〉
=

ΩD
FΩC
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=
ΩD

(FΩC)
′

=

ΩD (FΩC)
′

= d(ΩD) d
(
(FΩC)

′) (5.3.2)

The number of 1-handles and 2-handles are both 1, so the denominator equals
the above expression, thus the invariant is 1.

Note that it was necessary here to demand that the twist is trivial on transparent
objects.

• Invariance under the 2-3-handle cancellation is even easier to show: Since there
is a canonical way to attach 3- and 4-handles, they don’t appear in the link
picture. A 2-3-handle cancellation thus amounts to the removal of an unlinked,
unknotted 2-handle. By a similar argument as before, one can evaluate the
invariant on the link diagram of such a 2-handle and find that it is 1 as well.

Remark 5.9. Pivotality of F is essential for the invariance of IF . As an easy coun-
terexample, take the category of super vector spaces, which is defined as follows. As
monoidal category, choose the category of finite dimensional representations of Z2.
Choose the pivotal structure such that the sign representation σ has dimension −1,
and the trivial twist. The braiding is then required to be cσ,σ(v ⊗w) = −w ⊗ v, and
all other braidings trivial.

There is an obvious forgetful strong monoidal functor U to vector spaces sending
both simple objects to C. This functor is not pivotal since the dimension of C is +1.
One finds that the evaluation of the (undotted) unknot is

d
(
UΩRep(Z2)

)
=
∑

X∈ΛRep(Z2)

d(X) d(UX)

= 1 · 1 + (−1) · 1 = 0

However, the corresponding manifold is S4 and the empty diagram (which would
result from cancelling the single 2-handle with a 3-handle) evaluates to 1. It is
apparent now that a non-pivotal functor can break invariance.
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5.4 Simply-connected manifolds and multiplicativity under

connected sum

As was shown in Lemma 5.7, the generalised dichromatic invariant is multiplicative
under disjoint union of link diagrams. This operation, in turn, corresponds to
connected sum of manifolds. As a consequence, for two manifolds M1 and M2, the
invariant satisfies IF (M1 # M2) = IF (M1) · IF (M2), where # denotes connected
sum. This has far reaching consequences, as is shown in the following known lemma.

Lemma 5.10. Assume I is any invariant of oriented, closed four-manifolds that is
multiplicative under connected sum on simply-connected manifolds. Furthermore,
assume that I

(
CP2

)
and I

(
CP

2
)

are invertible. Then I is given on a simply-
connected four-manifold M by

I(M) =
(
I
(
CP2

)
I
(
CP

2
))−1+

χ(M)
2

 I
(
CP2

)
I
(
CP

2
)


σ(M)
2

(5.4.1)

χ and σ are Euler characteristic and signature, respectively.

Proof. The first, and by Poincaré duality third, homologies of M are trivial, so the
Euler characteristic χ(M) is equal to 2 + b2(M), where b2(M) = b+

2 (M) + b−2 (M) is
the rank of the second homology and b±2 (M) are the dimensions of the subspaces on
which the intersection form is positive or negative. Since the signature is σ(M) =

b+
2 (M)− b−2 (M), then it follows that b±2 (M) = (χ(M)± σ(M))/2− 1.
But it is well-known [GS99, Corollary 9.1.14] that simply-connected manifolds

stably decompose into CP2 and CP2 under connected sum, i.e. there exist natural
numbers m,n+, n− such that:

M #m CP2 #m CP
2 ∼= #n+

CP2 #n− CP
2 (5.4.2)

(M #n N denotes the connected sum of M and n copies of N .) By comparing the
intersection forms on both sides, one sees that that the numbers of positive and
negative eigenvalues are b±2 (M) = n± − m. Therefore by multiplicativity under
connected sum:

I(M)I
(
CP2

)m
I
(
CP

2
)m

= I
(
CP2

)n+

I
(
CP

2
)n−

=⇒ I(M) = I
(
CP2

)b+2 (M)
I
(
CP

2
)b−2 (M)
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Now (5.4.1) follows easily.

Remark 5.11. Such invariants cannot distinguish the homotopy-inequivalent manifolds
S2 × S2 and CP 2 # CP

2. In particular, these manifolds have different intersection
forms, but the same signature. Effectively, invariants with the above properties are
insensitive to this homotopical information.

Lemma 5.12. The generalised dichromatic invariant is invertible on CP2 and CP2.

Proof. This is best seen by directly calculating the invariants on these manifolds. It
is known that CP2 # CP

2 ∼= S2×̃S2, where the latter denotes the total space of a
twisted S2-bundle over S2, which has the following Kirby diagram [GS99, Figure
4.34]:

S2×̃S2 =

To the show the invertibility of both I
(
CP2

)
and I

(
CP

2
)
, calculate the following:

I
(
CP2

)
· I
(
CP

2
)

= I
(
CP2 # CP

2
)

=
〈LS2×̃S2 (ΩD, FΩC)〉

d(ΩC)
h2−h1 (d(ΩD) d

(
(FΩC)

′))h1
The killing property 4.15 and the handle numbers h1 = 0, h2 = 2 give:

=
d(FΩC)

∑
X∈ΛC

tr
(
θ(FX)′

)
d(ΩC)

2

Recall that the twist is required to be trivial on transparent objects inD. Furthermore,
F is pivotal and preserves quantum dimensions.

=
d((FΩC)

′)

d(ΩC)
(5.4.3)

Since FΩC contains at least the monoidal unit, the result cannot be 0.

Corollary 5.13. Lemma 5.10 applies to the generalised dichromatic invariant.

Proof. I
(
CP2

)
· I
(
CP

2
)
is invertible due to the previous lemma. Multiplicativity

under connected sum has already been shown in Lemma 5.7.

It remains to calculate the invariants of CP2 and CP2 in order to be able to give
concrete values for simply-connected manifolds. CP2 can be composed of a 0-handle,
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a 2-handle and a 4-handle. A link diagram for it is given by an unknotted circle with
framing +1, denoted by L+1. The value of the invariant is therefore:

I
(
CP2

)
=

〈L+1 (ΩD, FΩC)〉
d(ΩC)

h2−h1 (d(ΩD) d
(
(FΩC)

′))h1
=

∑
X∈ΛC

tr (θFX)

d(ΩC)
(5.4.4)

Analogously:

I
(
CP

2
)

=

∑
X∈ΛC

tr
(
θ−1
FX

)
d(ΩC)

(5.4.5)

For many cases of F , more concrete values can be calculated. This is done in Section
8.1.

5.5 Petit’s dichromatic invariant and Broda’s invariants

Broda defined two invariants of four-manifolds using the category of tilting modules
for Uqsl(2) at a root of unity [Bro93; Rob95]. The original invariant, called here
the Broda invariant, labelled both 1- and 2-handles with simple objects in this
category (the “spins”), whereas the refined Broda invariant labelled 2-handles
with just the integer spins. The Broda invariants were investigated by Roberts
[Rob95; Rob97], who showed that the Broda invariant depends on the signature of
the four-manifold whereas the refined Broda invariant detects also the first Betti
number with Z2 coefficients, and is sensitive to the second Stiefel-Whitney class
(which decides whether the manifold admits a spin structure).

Generalising Broda’s constructions to other ribbon fusion categories leads to the
following two classes of examples.

Example 5.14. As noted by Petit [Pet08, Remark 4.4], for the identity functor
1D : D → D one recovers, up to a factor depending on the Euler characteristic,
a generalised Broda invariant for a ribbon fusion category D satisfying the
conditions of Definition 5.5. Petit shows that this invariant depends only on the
signature (and Euler characteristic) of the four-manifold.

Example 5.15. The refined Broda invariant, which will be discussed again in Section
8.2, can be generalised to arbitrary ribbon fusion subcategories.

Let C and D be ribbon fusion categories. (D is not required to be modular.) For a
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full ribbon inclusion functor F : C ↪→ D, Petit’s dichromatic invariant I0 [Pet08,
(4.4)] is recovered, again up to a factor depending on the Euler characteristic χ(M),
which will be calculated in the following.

The notation in [Pet08] is subtly different: C ′ denotes an arbitrary subcategory
there, not necessarily the symmetric centre. Also, the notation for categorical
dimensions is different from this presentation. Redefining the symbols from [Pet08]
in the notation established here gives ∆C := d(ΩC) and ∆′′D,C := d

(
(FΩC)

′).
The nullity of the linking matrix of the link diagram has to be introduced, but

since M is closed, it equals h3, the number of 3-handles. Petit’s invariant is then in
the present notation:

I0(L) :=
〈L (ΩD,ΩC)〉

d(ΩC)
h3 (d(ΩD) d((FΩC)′))

h1+h2−h3
2

(5.5.1)

Note that the numerators of IF and I0 do not differ, but the normalisations do. To
compare the normalisation of invariants, their ratio is calculated using a handle
decomposition with exactly one 0-handle and 4-handle.

The ratio of invariants is then

IF (M)

I0(M)
=
d(ΩC)

h3 ·
(
d(ΩD) d

(
(FΩC)

′))h1+h2−h32

d(ΩC)
h2−h1 ·

(
d(ΩD) d

(
(FΩC)

′))h1
=


√
d(ΩD) d

(
(FΩC)

′)
d(ΩC)

χ(M)−2

(5.5.2)

The same calculation can be used to show that the refined Broda invariant from
[Bro93] is Petit’s invariant I0 for the subcategory of integer spins in the category of
tilting modules of Uqsl(2).

Remark 5.16. Whenever a full inclusion into a ribbon category is encountered, it
will be assumed that the subcategory inherits braiding and ribbon structures from
the bigger category. Also, it will be assumed that the canonical pivotal structure is
chosen on both sides, which is then automatically preserved.

Remark 5.17. Petit called his invariant “dichromatic” since the special framed link
arising from the handle decomposition is labelled with two different Kirby colours.
The invariant presented here uses two different colours as well, so it seems appropriate
to keep the name “dichromatic”, but to point out that it is somewhat more general.
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6 Simplification of the invariant

Here it is shown that a general argument allows the generalised dichromatic invariant
to be simplified in many cases.

Proposition 6.1. Let A F−→ B G−→ C H−→ D be a chain of pivotal functors on spherical
fusion categories. Let furthermore C H−→ D be ribbon, and let the symmetric centres
(Definition 4.10) C ′ and D′ have trivial twist. Assume these three conditions on F
and H, for some m,n ∈ C:

FΩA = nΩB

HΩC = mΩD

H
(
(GΩB)′

)
= (HGΩB)′

Then IHGF = IG.

Proof. Note that since F and H are pivotal, the values of m and n can be inferred
by taking the dimensions on each side of the first two conditions:

d(ΩA) = n · d(ΩB)

d(ΩD) = m−1 · d(ΩC)

Let now L be a special framed link for the four-manifold M .

〈L (ΩD, HGFΩA)〉 = 〈L (HΩC, HGΩB)〉 ·m−h1nh2

= 〈L (ΩC, GΩB)〉 ·m−h1nh2

The first two assumptions were inserted, then it was used that H is ribbon, to arrive
at the enumerator of IF (M) up to the factors of m and n. Using the first and the
third assumption, the missing part in the denominator of IF (M) can be calculated:

d
(
(HGFΩA)′

)
= n · d

(
(HGΩB)′

)
= n · d

(
H (GΩB)′

)
= n · d

(
(GΩB)′

)
It is easy to see now that all factors of n and m cancel.

In the following, it is shown that there is an abundance of functors satisfying these
conditions, allowing a simplification of the generalised dichromatic invariant in many
cases. Examples include cases where either H or F is the identity functor.
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6.1 Simplification for unitary fusion categories

One case, in which the generalised dichromatic invariant simplifies to Petit’s dichro-
matic invariant is the case of unitary fusion categories, which are certain non-
degenerate C-linear †-categories. The unitarity condition is important in mathemati-
cal physics, and many examples are known. The theory of unitary fusion categories
is well developed, and many important properties are found in the literature, e.g.
[Dri+10]. Instead of giving a self-contained introduction, the relevant known facts
are listed.

• A fusion †-category with a rigid structure has a canonical spherical structure
(see [Sel10, Lemma 7.5]) defined by the †-structure and the chosen duals.

• A unitary functor, or †-functor, is a functor that preserves the †-structure.
A strong monoidal unitary functor is pivotal, so it preserves the canonical
spherical structure.

Definition 6.2. A strong monoidal functor of fusion categories F : C → D is called
dominant if for any object Y ∈ obD there exists an object X ∈ ob C such that Y
is a subobject of FX. In [ENO05] these are also known as “surjective functors”.

Lemma 6.3. Let F : C → D be a dominant unitary functor of unitary fusion
categories. Let furthermore both categories have the canonical spherical structure
coming from the unitary structure. Then the following holds:

FΩC =
d(ΩC)

d(ΩD)
ΩD (6.1.1)

Proof. An analogous equation holds for the Frobenius-Perron dimensions [ENO05,
Proposition 8.8]. In unitary fusion categories with the canonical spherical structure
Frobenius-Perron dimensions and categorical dimensions coincide.

Definition 6.4. For a strong monoidal functor F of fusion categories, define the
image category ImF [Dri+10, Definition 2.1]. Its objects are all objects of D that
are isomorphic to a subobject of FX, where X is any object in C. The morphisms
of ImF are chosen such that it is a full fusion subcategory of D.

Lemma 6.5. Let F : C → D be a strong monoidal functor of fusion categories. Then
F = F2 ◦ F1, where F1 : C → ImF is a dominant functor, and F2 : ImF → D the
full inclusion from the previous definition.
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Proof. By construction of the image category, F factors through it, and F restricted
to ImF is dominant.

Corollary 6.6. Let F : C → D be a strong monoidal unitary functor of unitary
fusion categories, and again D ribbon such that its symmetric centre D′ has trivial
twist. Then IF = IF2 , and so is equal to Petit’s dichromatic invariant I0 for the
inclusion F2 : ImF ↪→ D, multiplied by the Euler characteristic factor from (5.5.2).

Proof. Use the previous lemma to decompose F into a dominant functor and a
full inclusion. By the lemma before, the dominant part satisfies the conditions of
Proposition 6.1, so IF is reduced to the invariant for the full inclusion. The fusion
subcategory inherits the pivotal structure from D. An invariant from a full inclusion
is a case of Petit’s dichromatic invariant, as explained in Example 5.15.

6.2 Modularisation

This subsection considers examples that will be compared to the Crane-Yetter
invariant in Section 8.

Definition 6.7. A ribbon fusion categoryD is calledmodularisable if its symmetric
centre D′ has trivial twist and dimensions in N. For modularisable categories, there
exists a faithful functor H : D → D̃ with D̃ modular, called the modularisation
(also “deequivariantisation”) of D. Some standard references are [Bru00] or [Mü00].

Remarks 6.8. • H is usually not full.

• The name “deequivariantisation” comes from thinking of D′ as the represen-
tations of some finite group. H restricted to D′ then plays the role of a fibre
functor, while not disturbing the nontransparent objects. D̃ has the same
objects as D, but additional isomorphisms from any transparent object to a
direct sum of Is.

• For any symmetric fusion category without twist or pivotal structure, one can
choose the trivial twist θX = 1X . With the corresponding pivotal structure,
the categorical dimensions of objects are then in Z. Alternatively, one can
choose a pivotal structure with categorical dimensions in N, but then the twist
will usually not be trivial. To adhere to the conditions in Definition 5.5, the
trivial twist will always be chosen for symmetric fusion categories.
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Proposition 6.9. Let F : C → D be pivotal with C spherical fusion and D modu-
larisable. Such a functor satisfies the conditions of our invariant in Definition 5.5.
Let H : D → D̃ be the modularisation functor. Then IF = IH◦F .

Proof. In [Bru00, Proposition 3.7] it is stated that HΩD ∼= d(ΩD′) ΩD̃. It is easy
to check that D̃ (I,H (X ′)) = D̃ (I, (HX)′) follows from the original definition, and
therefore H

(
(FΩC)

′) = (HFΩC)
′ since both sides are multiples of I. Thus, Proposi-

tion 6.1 can be applied.

Intuitively, the transparent objects on the 1-handles can be removed and don’t
contribute to the invariant. The modularisation H makes this explicit by sending all
objects in D′ to multiples of I.
One can make use of this fact by noting that many generalised dichromatic

invariants are equal to an invariant arising from a functor into a modular category. It
is necessary to demand all dimensions of simple objects in D′ to be positive, but this
is the sole restriction. In Section 7, it will be shown that invariants with a modular
target category can be expressed in terms of a state sum and therefore extend to
topological quantum field theories.

Remark 6.10. The modularisation H is not a full inclusion if the source D is not
modular (and the identity otherwise). Therefore, the composition H ◦ F will usually
not be full either, even if F is. However, in the unitary case, the following corollary
is helpful.

Corollary 6.11. Let F : C → D be a strong monoidal unitary functor of unitary
fusion categories. Let also D be modularisable, and H the modularisation functor.
Then there is a full inclusion into a modular category G : Im(H ◦ F )D̃, and IF = IG.

Proof. From Proposition 6.9, IH◦F = IF , where H is the modularisation. Therefore
Corollary 6.6 can be applied to H ◦ F .

6.3 Cutting strands

If the target category D of the pivotal functor is modular, each 1-handle is labelled
by ΩD. The strands of the 2-handles going through it can be cut, using Lemma
4.16. This is the algebraic analogue of reverting from Akbulut’s dotted handle
notation to Kirby’s original notation for handle decompositions where each 1-handle
is represented by a pair of D3s. There is now a simpler definition of the generalised
dichromatic invariant, which is obtained by cutting the strands through the 1-handles.
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Definition 6.12. Let K be a Kirby diagram for a handle decomposition of a smooth,
closed four-manifold M . Choose orientations on the S1 of the attaching boundary
of each 2-handle, and a choice of + and − signs on the respective 3-balls for each
1-handle.

1. An object labelling is a map X from the set of 2-handles to the set of simple
objects in C. The object assigned to the i-th 2-handle is written Xi.

2. Now, for every 1-handle with 2-handles i ∈ {1, 2, . . . N} entering or leaving
the ball labelled with +, dual bases for the morphism spaces D(FX1 ⊗ FX2 ⊗
· · · ⊗ FXN , I) and D (I, FX1 ⊗ FX2 ⊗ · · · ⊗ FXN) are chosen. (The objects
on leaving 2-handles are dualised.)

A morphism labelling for a given object labelling is a choice of basis mor-
phism for the +-ball of every 1-handle, and the corresponding dual morphism
on the ball labelled with −.

3. For a given object and morphism labelling, the evaluation of the labelling is the
evaluation of the labelled diagram as a morphism in D(I, I) ∼= C, multiplied
with the factor

∏
i d(Xi), where i ranges over all 2-handles.

4. The evaluation 〈K(F )〉 of the Kirby diagram K is the sum of evaluations over
all labellings.

Proposition 6.13. Let K be a Kirby diagram for a handle decomposition of a
smooth, closed four-manifoldM . Let F : C → D be a pivotal functor from a spherical
fusion category to a modular category, and let n be the multiplicity of I in FΩC.
Then the generalised dichromatic invariant is:

IF (M) =
〈K(F )〉

d(ΩC)
h2−h1 nh1

(6.3.1)

Proof. Application of Lemma 4.16 to the labelled special framed link L shows:

〈L (ΩD, FΩC)〉 = d(ΩD)h1 〈K(F )〉

Since D is modular, d
(
(FΩC)

′) = d(nI) = n and the result follows.

This proposition can be used as an alternative definition of the invariant in most
cases. However to prove invariance under all handle slides, it is more convenient to
refer to the original Definition 5.5.
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7 The state sum model

The Crane-Yetter invariant is originally defined using a state sum model on a
triangulation of a four-manifold [CYK97]. However, it was not presented as a state
sum model in Section 3.1. This is possible using a reformulation of the original
definition due to Roberts, as presented in [Rob95, Section 4.3]. He showed that for
modular categories, the Crane-Yetter state sum CY is equal to the Broda invariant
B up to a normalisation involving the Euler characteristic, through a process called
“chain mail”, which will be described in the following.

This is not true for nonmodular C: As will be shown in the next section, CY and
B indeed differ in this case. The nonmodular Crane-Yetter invariant arises from
Petit’s dichromatic invariant and does not depend only on the signature and Euler
characteristic, but also at least on the fundamental group.

Previously, it wasn’t known how to derive the nonmodular Crane-Yetter invariant
from a handle picture. With the generalised dichromatic invariant, it is possible to
do so. Through chain mail one can recover a state sum description of the generalised
dichromatic invariant IF , whenever F : C → D such that D is modular. So the
generalised dichromatic invariant has a purely combinatorial description in terms of
triangulations in that case. The nonmodular Crane-Yetter invariant will turn out to
be a special case.
In general, the state sum model will be useful to understand the physical in-

terpretation of a particular model, while the handle picture is very convenient for
calculations.

7.1 The chain mail process and the generalised 15-j symbol

Given a four-dimensional manifold M with triangulation ∆, there is always a 0-
framed, unknotted handle decomposition via the following process: Replace the
triangulation by its dual complex, i.e. 4-simplices s ∈ ∆4 by vertices, tetrahedra
t ∈ ∆3 by edges, triangles τ ∈ ∆2 by polygons and in general (4− k)-simplices by
k-cells. A k-cell, k ≤ 3, will then have a valency (the number of adjacent (k+1)-cells)
of 5− k, coming from the number of faces of the original simplex.
Then consider the handle decomposition arising from a thickening of this dual

complex. This handle decomposition has h0 0-handles, where h0 is then the number of
4-simplices in the triangulation, ∆4. To work with Kirby diagrams, a decomposition
with only one 0-handle is needed. In [Rob95, Section 4.3], Roberts shows that
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cancelling all but one 0-handle with 1-handles amounts to multiplying the invariant
by IF (S1 × S3)1−h0 = d(ΩC)

1−h0 .
Inserting morphism boxes for the two D3s at every 1-handle arising from a tetra-

hedron disconnects the whole link diagram into pentagram-shaped subdiagrams for
every 4-simplex.
To arrive at the pentagram shape, first realise that the boundary of a 4-simplex

is S3 ∼= R3 ∪ {∞}. This is the boundary of the 0-handle to which 1-handles and
2-handles are attached. Visualise the triangulation of the boundary by arranging
four vertices of the 4-simplex as a tetrahedron around the origin and putting the
remaining vertex at infinity. Connecting the first four vertices to the vertex at infinity
gives the remaining four tetrahedra. Now draw one copy of D3 for each tetrahedron
(the respective copy belonging to a neighbouring 4-simplex) and connect each pair of
D3s with lines from the triangles as 2-handles. The resulting subdiagram is now a
big tetrahedron of D3s with a further D3 in the centre of the tetrahedron. Project
this subdiagram onto the plane, for every 4-simplex, and apply Definition 6.13. After
applying an arbitrary isotopy in the plane, the evaluation of such a subdiagram
labelled with objects Xi ∈ ob C and morphisms ιi, i ∈ {0, . . . , 4}, j ∈ {0, . . . , 9} in
D is:

(FXi, ιi) := (FX0, . . . , FX9, ι0, . . . , ι4)

:=

ι0

ι 1

ι2 ι3

ι
4

FX0

FX1

FX2

FX3

FX4

FX7

FX9

FX6

FX5

FX8

(7.1.1)

The over- and under-braidings follow the convention of Roberts. It involves a
“splitting convention” to arrive at a correct blackboard framing, see [Rob95, Figure
17].
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The diagram does not yet correspond to a morphism. To evaluate it in terms of
diagrammatic calculus of the ribbon category D, one has to orient the lines upwards
or downwards and insert evaluations and coevaluations as needed, in order to specify
where an object or its dual is the source or the target of a morphism. To arrive at
such a choice, fix a total ordering of the vertices. This ordering induces an orientation
on the tetrahedra. Each tetrahedron occurs as the face of two 4-simplices, which are
oriented as submanifolds ofM , and the tetrahedron inherits two opposite orientations
from each of them. Since a tetrahedron corresponds to a 1-handle, the + and − signs
need to be distributed onto the attaching D3s. Put the + sign on the D3 attaching to
the 4-simplex from which the tetrahedron inherits the orientation agreeing with the
ordering of the vertices. Consequently, its morphism is ι : Xi1 ⊗Xi2 ⊗Xi3 ⊗Xi4 → I,
while the morphism of the other D3 goes in the other direction.

7.2 The state sum

Since the whole diagram is a disconnected sum of diagrams of the above shape, its
evaluation will be a product of -quantities. Recall Definition 4.3, where colours,
such as the Kirby colour ΩC are understood in terms of evaluating the diagram as a
sum over simple objects. This sum leads to a state sum formula for IF . The Xi in
the definition of are then summands of FΩC, which was labelling the 2-handles.
The ιi label the D3s of a 1-handle. The invariant IF will then be a big sum over the
summands of all these copies of FΩC and the dual morphism bases.

Definition 7.1. An F -object labelling of the triangulation ∆ is a function

X : ∆2 → ΛC (7.2.1)

For a given F -object labelling and a total ordering of the vertices ∆0, fix bases of the
morphism spaces in the following way: For every tetrahedron t ∈ ∆3 with vertices
v0 < v1 < v2 < v3, denote by τi the face triangle of t where the vertex vi is left out.
Now choose dual bases for the space D (FY (τ0)⊗ FY (τ2)⊗ FY (τ1)⊗ FY (τ3), I)

and its dual.
Then, using the same convention, an F -morphism labelling is a function

ι : ∆3 → morD (7.2.2)

where ι(t) is a basis vector of the space D (FY (τ0)⊗ FY (τ2)⊗ FY (τ1)⊗ FY (τ3), I).
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Definition 7.2. For given labellings X and ι, define as their amplitude the evalu-
ation of the labelled link diagram:

[X, ι] :=
∏
τ∈∆2

d(X(τ))
∏
s∈∆4

(FX(τi), ι(ti)) (7.2.3)

Here, the ti are the faces of s and the τi their faces in turn, in the appropriate order.
Whenever the orientation of the D3 of a tetrahedron ti induced from the total ordering
matches the face orientation from the 4-simplex, evaluate the -quantity with the
morphism ι(ti) and otherwise with its dual basis vector. Since every tetrahedron
is the face of exactly two 4-simplices, for every morphism ι(t), its dual will appear
exactly once in the labelling, so the sum in the following will indeed range over dual
bases.
Note that since the 2-handles are labelled with FΩC, the -diagram must be

labelled with FX(τi).

From the normalisation from the multiple 4-simplices (0-handles), the evaluation
of a Kirby diagram K is:

〈K(F )〉 = d(ΩC)
1−|∆4|

∑
labellings

X,ι

[X, ι] (7.2.4)

This quantity has to be multiplied by the normalisation, which is:

d(ΩC)
−h2+h1 n−h1 = Ω

−|∆2|+|∆3|
C d((FΩC)

′)
−|∆3|

Theorem 7.3. For F : C → D being a pivotal functor satisfying the conditions
of Definition 5.5 with D modular, the generalised dichromatic invariant has the
following state sum formula:

IF (M) = d(ΩC)
1−|∆2|+|∆3|−|∆4| d((FΩC)

′)
−|∆3|

∑
labellings

X,ι

[X, ι]

= d(ΩC)
1−χ(M)+|∆0|−|∆1| d((FΩC)

′)
−|∆3|

·
∑

labellings
X,ι

∏
τ∈∆2

d(X(τ))
∏
s∈∆4

(FX(τi), ι(ti)) (7.2.5)
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7.3 Trading four-valent for trivalent morphisms

In order to compare it to the Crane-Yetter model, the state sum needs to be
reformulated slightly. There, the vertices in the -diagram are trivalent, which
is more convenient when working with Uqsl(2) tilting modules. The four-valent
morphisms appeared when applying Lemma 4.16 to the four 2-handles (triangles)
going through a 1-handle (tetrahedron) in Proposition 6.13. If one inserts two ΩDs
instead, one can produce two trivalent vertices:

ΩD

FX0 FX1 FX2 FX3

=
∑
ιi,ιj

Y,Ỹ ∈ΛD

d(Y ) d
(
Ỹ
) ιi ιj

ιi ιj

FX0 FX1 FX3FX2

ΩD
Y Ỹ

= d(ΩD)
∑
ιi,ιj
Y ∈ΛD

d(Y )

ιi ιj

ιi ιj

FX0 FX1 FX3FX2

Y

Y
(7.3.1)

For the last step, Lemma 4.17 has been used, cancelling the factor d(() Ỹ ). Note
that the additional objects now range over the simple objects in D, not C.

The alternative -quantity is then defined as:

˜
(FXi, Yi, ιi, ι̃i) :=

˜
(FX0, . . . , FX9, Y0, . . . , Y4, ι0, . . . , ι4, ι̃0, . . . , ι̃4)
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:=

ι0

ι̃0
Y0

ι1
ι̃1 Y1

ι2

ι̃2

Y2
ι3

ι̃3
Y3

ι4
ι̃4

Y4

FX0

FX1
FX7

FX4

FX6
FX3

FX9

FX5

FX2

FX8

(7.3.2)

Again, it has to be specified where an object or its dual is the source or the target of
a morphism. Each tetrahedron corresponds to an encirclement. It occurs as the face
of two 4-simplices, which are oriented as submanifolds of M , and the tetrahedron
inherits two opposite orientations from each of them. Orient the encircling (7.3.1)
such that the 4-simplex from which the tetrahedron inherits the orientation agreeing
with the ordering of the vertices appears on the top.

Object and morphism labellings now have different definitions than in Section 7.2:

Definition 7.4. An F -object labelling of the triangulation ∆ is a pair of functions
(X, Y ), where

X : ∆2 → ΛC (7.3.3)

Y : ∆3 → ΛD (7.3.4)

Choose dual bases for the spaces D (FX(τ0)⊗ FX(τ2), Y (t)) and D(FX(τ1) ⊗
FX(τ3), Y (t)) and their duals.

An F -morphism labelling is a pair of functions (ι, ι̃)

ι, ι̃ : ∆3 → morD (7.3.5)

where ι(t) is a basis vector of the space D (FX(τ0)⊗ FX(τ2), Y (t)) and ι̃(t) is a
basis vector of D (FX(τ1)⊗ FX(τ3), Y (t)).
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Definition 7.5. For given labellings (X, Y ) and (ι, ι̃), the amplitude is:

〈(X, Y ), (ι, ι̃)〉 :=
∏
τ∈∆2

d(X(τ))
∏
t∈∆3

d(Y (t)) d(ΩD)

·
∏
s∈∆4

˜
(FX(τi), Y (ti), ι(ti), ι̃(ti)) (7.3.6)

Lemma 7.6. From the Killing property and the normalisation from the multiple
vertices, the evaluation of the special framed link L associated to the triangulation
is:

〈L (ΩD, FΩC)〉 = d(ΩC)
1−|∆4|

∑
labellings

(X,Y ),(ι,ι̃)

〈(X, Y ), (ι, ι̃)〉 (7.3.7)

Theorem 7.7. Using the original Definition (5.2.1), the state sum formula can also
be written as:

IF (M) = d(ΩC)
1−|∆2|+|∆3|−|∆4| d(ΩD)−|∆3| d

(
(FΩC)

′)−|∆3|∑
labellings

(X,Y ),(ι,ι̃)

〈(X, Y ), (ι, ι̃)〉

= d(ΩC)
1−χ(M)+|∆0|−|∆1| d

(
(FΩC)

′)−|∆3|

·
∑

labellings
(X,Y ),(ι,ι̃)

( ∏
τ∈∆2

d(X(τ))
∏
t∈∆3

d(Y (t))

·
∏
s∈∆4

˜
(FX(τi), Y (ti), ι(ti), ι̃(ti))

)
(7.3.8)

8 Examples

8.1 The Crane-Yetter state sum

If F : C → D is a full inclusion (Petit’s dichromatic invariant, Example 5.15) and D
is already modular, the generalised dichromatic invariant simplifies:

Proposition 8.1. Let F : C ↪→ D be a full pivotal inclusion of a spherical fusion
category into a modular category.

1. IF depends only on C, with the inherited ribbon structure. It will henceforth
be denoted as ĈY C.
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2. ĈY C is the Crane-Yetter state sum CYC from [CYK97] for C up to the Euler
characteristic χ:

ĈY C(M) = CYC(M) · d(ΩC)
1−χ(M) (8.1.1)

Proof. 1. Since D is modular, the simplified definition in Proposition 6.13 can
be used, with n = 1. Object labellings already take values in ΛC. Morphism
labellings take values in D(FX1 ⊗ · · · ⊗ FXN , I), but this is isomorphic to
C(X1 ⊗ · · · ⊗XN , I) since F is full. The evaluation of the Kirby diagram can
thus be carried out in C and depends only on data from C and the ribbon
structure inherited from D.

2. In the state sum description, an additional ΩD is inserted in (7.3.1) to transform
the four-valent vertex into two trivalent vertices, introducing additional objects
X labelling the tetrahedra. Here, this can be achieved instead by using the
insertion lemma 4.6 in C. Thus the labellings of the state sum can be taken to
range over X : ∆3 → ΛC and ι, ι̃ : ∆3 → mor C.

A direct comparison of the state sum formula (7.3.8) to [CYK97, Theorem 3.2]
shows the equality to CYC. The version of the insertion lemma 4.6 slightly
differs by inserting ΩC =

⊕
X d(X)X whereas Crane, Yetter and Kauffman

insert
⊕

X X, leading to different dimension factors.

Remark 8.2. Let C be a ribbon fusion category with braiding c. Then there is a full
inclusion of C into its Drinfeld centre Z(C) by mapping an object X to (X, cX,−).
So the Crane-Yetter invariant can always be studied as a special case of Petit’s
dichromatic invariant. This is a significant generalisation since the original derivation
of the Crane-Yetter state sum from a handlebody picture required C to be modular,
while the version presented here does not.

Remark 8.3. Recall that if D is not modular, but modularisable, then the associated
state sum model via the modularisation H can be considered. But H ◦ F will not
always be full and may thus fail to give rise to a case of Petit’s dichromatic invariant.
However, if both categories are unitary, Corollary 6.11 can be used to return to a
full inclusion, but in other cases, a new state sum model might arise.
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Manifold M ĈY C(M) χ(M) σ(M)

CP2 ∑
X∈ΛC

d(X)2 θX · d(ΩC)
−1 3 1

CP
2 ∑

X∈ΛC
d(X)2 θ−1

X · d(ΩC)
−1 3 -1

S2 × S2 d(Ω′C) · d(ΩC)
−1 4 0

S2×̃S2 ∼= CP2 # CP
2

d(Ω′C) · d(ΩC)
−1 4 0

S4 (including exotic candidates) 1 2 0

Table 8.1: The Crane-Yetter invariant for several simply-connected manifolds.

Simply-connected manifolds

For simply-connected manifolds, the Crane-Yetter invariant reduces to known invari-
ants of the ribbon fusion category. Recalling the results from Section 5.4, the value
for CP2 is:

I
(
CP2

)
=

∑
X∈ΛC

tr (θX)

d(ΩC)

Since X is simple, the morphism θX amounts for multiplying by a complex number,
which will be denoted by the same symbol:

=

∑
X∈ΛC

d(X)2 (θX)

d(ΩC)
(8.1.2)

The result is also known as the “normalised Gauss sum” of the category C.
As another basic example, the manifold S2×S2 has the Hopf link of two 0-framed

2-handles as Kirby diagram, and thus its invariant is:

ĈY C
(
S2 × S2

)
=
d(ΩC′)

d(ΩC)
(8.1.3)

The same value could be calculated from (5.4.1), but in this case, the direct calculation
is more convenient.
An overview over the Crane-Yetter invariant of several simply-connected 4-mani-

folds is given in Table 8.1.
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8.2 Non-simply-connected manifolds

If the four-manifold M is not simply-connected, then the observation in Lemma
5.10 (that on simply-connected manifolds, the invariant is not stronger than Euler
characteristic and signature) is not applicable any more. And indeed, already the
Crane-Yetter invariant is stronger than the Broda invariant on such manifolds, in
that it depends at least on the fundamental group. This can be seen in the following
examples, and also in the next subsection.

Consider the Crane-Yetter model of a ribbon fusion category C that is not modular.
This is, up to Euler characteristic and a constant factor, the generalised dichromatic
invariant ĈY C for a full inclusion F of C into a modular category D.

Manifolds of the form S1 ×M3

Assume for now that our manifold of interest is a product S1 ×M , for some closed
3-manifold M . Since S1 ×M = ∂(D2 ×M), its signature must be 0. The Euler
characteristic is also χ(S1 ×M) =χ(S1) · χ(M) = 0.
Let us study the cases M = S3 and M = S1 × S2. The manifold S1 × S3 has a

handle decomposition with one 1-handle and no 2-handles and its link diagram in
Akbulut notation is the dotted unknot. Its invariant is therefore:

ĈY C
(
S1 × S3

)
= d(ΩC) (8.2.1)

For S1 × S1 × S2, a handle decomposition is derived by following [GS99, 4.3.1, 4.6.8
and 5.4.2], and starting from a Heegaard diagram of S1 × S2. It is presented here in
the form of a 2-handle attaching curve on the boundary of a solid torus, which is
R2 ∪ {∞} with two disks identified.

S1 × S2 =
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The two disks are the attaching disks of the 1-handle in ∂D3 = S2 = R2 ∪{∞}. The
circle is the attaching circle of the 2-handle. Thickening this picture gives a Kirby
diagram for I × S1 × S2 and adding a further 1- and 2-handle gives:

S1 × S1 × S2 =

The left and the right 3-ball are the attaching balls of the thickened 1-handle, the
front and the back ones come from the additional 1-handle.

The simplified definition of the invariant from Proposition 6.13 is used. Since there
are the same number of 2-handles and 1-handles and n = 1, the normalisation is 1,
and the invariant evaluates to

ĈY C
(
S1 × S1 × S2

)
=

〈 〉

=
∑

X,Y ∈ΛC
ιi,ιj : Y ∗⊗Y→I

d(X) d(Y )

ιi

ιi

ιj

ιj

Y

X
Y

Y
Y

=
∑

X,Y ∈ΛC

d(X) d(Y )−1 YX

=
∑

X,Y ∈ΛC

d(X) d(Y )−1

Y

X

=
∑
X∈ΛC
Y ∈ΛC′

d(X) d(Y )−1 YX

=
∑
X∈ΛC
Y ∈ΛC′

d(X)2

= |ΛC′| d(ΩC) . (8.2.2)
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Manifold M ĈY C(M) H1(M) π1(M)

S1 × S3 d(ΩC) Z Z

S1 × S1 × S2 d(ΩC) · |ΛC′| Z⊕ Z Z⊕ Z
S1 × S3 # S1 × S3 # S2 × S2 d(ΩC) · d(ΩC′) Z⊕ Z Z ∗ Z

Table 8.2: The Crane-Yetter invariant for three non-simply-connected manifolds with
zero Euler characteristic and signature, compared to their first homologies and their
fundamental group. The notation Z ∗ Z stands for the free group product of Z with
itself, i.e. the free group on two generators.

If C is not modular, that is, if ΛC′ has more than one element, I(S1 × S1 × S2) 6=
I(S1 × S3).

Homology and homotopy

Since ĈY is multiplicative under connected sum, one can easily calculate the invariant
on a manifold as the following:

ĈY C
(
S1 × S3 # S1 × S3 # S2 × S2

)
= d(ΩC) d(ΩC′) (8.2.3)

This example is of interest since the latter manifold has the same first homology and
signature as S1 × S1 × S2, but a different fundamental group. The Crane-Yetter
invariant is sensitive to this difference exactly iff the symmetric centre C ′ contains a
simple object of dimension greater than 1. This situation occurs when C ′ is equivalent
to the representations of a noncommutative finite group. An overview is given in
Table 8.2.

Refined Broda invariant

An example of the Crane-Yetter invariant is the refined Broda invariant described in
Section 5.5, where C is the subcategory of integer spins in a suitable quotient category
D of tilting modules of Uqsl(2), at an appropriate root of unity. According to [Rob97],
the invariant for any manifold of the form S1 ×M3, with our normalisation, is:

ĈY C = 2b1−1d(ΩC) (8.2.4)

b1 is the first Z2-coefficient Betti number of the four-manifold. A good example
occurs for the root q = eiπ/4 (level 2), when the simple objects are the half-integer spin

62



representations ΛD =
{

0, 1
2
, 1
}
and ΛC = {0, 1}. In this example, C = C ′ ' Rep (Z2)

is symmetric monoidal. If one takes a different non-trivial root of unity, C will not
be symmetric monoidal any more, but it still has exactly two transparent objects.
Note that our results differ from those reported in [CKY93], where the authors

implicitly assumed that C is modular, which it isn’t.

8.3 Dijkgraaf-Witten models

The purpose of this section is to show how Dijkgraaf-Witten models are a special
case of the Crane-Yetter model, and therefore of Petit’s dichromatic invariant. The
construction uses the representations of a finite group. The same symbol is used for
a representation and its underlying vector space. If ρ1 and ρ2 are representations,
then the trivial braiding is the map cρ1,ρ2(x⊗ y) = y ⊗ x.

Definition 8.4. Let F : Rep(G) ↪→ D be a full ribbon inclusion of the represen-
tations of a finite group G, with the trivial braiding and trivial twist, into a modular
category. Then the invariant IF is called the Dijkgraaf-Witten invariant associ-
ated to G.

Remark 8.5. This choice of name will be justified subsequently. Since F is full, IF
can be denoted as ĈY Rep(G) and only depends on G, as argued in Section 8.1. A
suitable modular category to embed Rep(G) is simply the Drinfeld centre. Further
comments on Dijkgraaf-Witten invariants as Crane-Yetter or Walker-Wang TQFTs
are found in Section 9.2.

Definition 8.6. The regular representation of a finite group G is denoted as
C[G] and defined as follows: The underlying vector space is the free vector space
over the set G. The action of G is defined on the generators by left multiplication.

It is known that C[G] ∼= ΩRep(G)
∼= ⊕ρρ⊗Cd(ρ) where ρ ranges over the irreducible

representations of G.

Definition 8.7. Every group element g ∈ G gives rise to a natural transformation of
the fibre functor, µ(g)ρ : ρ→ ρ, given by µ(g)ρ(v) = gv. In fact, µ is a homomorphism.

The following two lemmas are basic facts of finite group representation theory.

Lemma 8.8. For any representation ρ, there is a projection on the invariant subspace:

invρ :=
∑
i

ρ
ιi→ I

ιi→ ρ (8.3.1)
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=
1

|G|
∑
g

µ(g)ρ (8.3.2)

The ιi and ιj range over bases with ιi ◦ ιj = δi,j1I .

Lemma 8.9. The categorical trace over left multiplication on the regular represen-
tation, µ(g)C[G], is proportional to the delta function:

tr
(
µ(g)C[G]

)
= |G|δ(g) (8.3.3)

Definition 8.10. For a finite group G, a flat G-connection on a topological space
M is a homomorphism π1(M)→ G.

Remark 8.11. Only connections on four-manifolds will be considered here. Recall
from Section 4.2 that the generators of the fundamental group π1(M) are given
by the 1-handles, while each 2-handle is a relation word. Then a homomorphism
π1(X) → G is a choice of a group element for each 1-handle such that for every
2-handle, the group elements according to its relation word compose to the trivial
element.

The following result shows that this invariant depends only on π1(M).

Theorem 8.12. Let Rep(G) be the representations of a finite group G with the
symmetric braiding and trivial twist. Then ĈY Rep(G)(M) is the number of flat
G-connections on M .

Proof. The proof is graphical. Since D is modular, the simplified definition of the
invariant from Proposition 6.13 can be used. Since F is full, the invariant can
be calculated using objects and morphisms from C, as in Proposition 8.1. The
morphism K(F ) can be manipulated using the coherence axioms of ribbon categories
as isotopies of the link in the plane. An example is given in Figure 8.1a, though one
should bear in mind that in general there may be more than two 2-handle attaching
curves passing along each 1-handle. There may also be crossings that cannot be
removed by an isotopy alone.
Consider any 2-handle in the link picture that is not linked to a 1-handle. Since

Rep(G) is symmetric with trivial twist and F is ribbon, the knot on the 2-handle, its
framing and links to other 2-handles can be undone, and then the morphism can be
isotoped away. All such 2-handles then give a global numerical factor which cancels
parts of the normalisation, arriving at a diagram that has only 2-handles which start
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∑
X,Y,ιi,ιj

d(X) d(Y ) ·

ιi

ιi

ιj

ιj

Y

X
Y

Y
Y

(a) Evaluation of a handle picture of a non-
simply-connected manifold. (In this exam-
ple, S1 × S1 × S2).

∑
Y,ιi,ιj

d(Y ) |G| ·

ιi

ιi

ιj

ιj

Y
Y

Y
Y

(b) Remove the 2-handles not attached to
any 1-handles to give a global factor.

∑
Y,ιi,ιj

d(Y ) |G| ·
ιi

ιi

ιj

ιj

Y

(c) Rearrange the 1-handles to recognise the
projection morphisms.

|G|−1 ·
∑
g1

µ(g1)
∑
g2

µ(g2)

g1g2g
−1
1 g−1

2

C[G]

(d) 1-handles are generators of the fundamen-
tal group. Trace with the relation words.

Figure 8.1: For the representations of a finite group, ĈY evaluates to the Dijkgraaf-
Witten invariant.

or end in morphisms coming from 1-handles, while evaluating to the same value
(Figure 8.1b).

The morphisms on the 1-handles are lined up horizontally and, after an isotopy,
recognised as the projection morphisms inv = 1

|G|
∑

g µ(g) defined in Lemma 8.8.
This is shown in Figures 8.1c and 8.1d. All of the 1-handles then give a morphism

1
|G|h1

∑
g1
µ (g1) ⊗

∑
g2
µ (g2) ⊗ · · · ⊗

∑
gh1

µ (gh1), which are traced over with the
2-handles. The factor 1

|G|h1 is cancelled by the normalisation as well since ΩC = |G|.
To perform the trace for each 2-handle, consider Lemma 8.9. If the relation word

for the 2-handle k is denoted by r1r2 . . . rmk , the trace for k is δ
(
gr1gr2 · · · grmk

)
.

Again the remaining normalisation is cancelled with the factor |G|. After tracing
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out with all 2-handles, the invariant is then

ĈY Rep(G)(M) =
∑
g1∈G

∑
g2∈G

· · ·
∑
gh1∈G

∏
2-handles k

δ
(
gr1gr2 · · · grmk

)
= |{φ : π1(M)→ G}| (8.3.4)

using Remark 8.11.

This result shows that ĈY Rep(G) is the partition function of a Dijkgraaf-Witten
model, described for example in [Yet92]. In the more common normalisation in the
literature, one would divide ĈY Rep(G) by |G| = d(ΩC), though.

Remark 8.13. One would expect a four-dimensional Dijkgraaf-Witten model to
depend not only on a finite group G, but also on a 4-cocycle on G. The cocycle
in the present model is trivial, though. A natural way for a 4-cocycle to arise is
as a pentagonator in a tricategory. But braided categories are a special case of a
tricategory with one 1-morphism, and these have a trivial pentagonator, see e.g.
[CG07]. Hence, there seems little hope to introduce the data of a 4-cocycle into the
representation category of G. The model would have to be generalised to fully weak
monoidal bicategories, for example, following e.g. [Mac99].

Remark 8.14. Due to the Doplicher-Roberts reconstruction (see [Dri+10, Paragraph
2.12] for a categorical approach), it is known that symmetric fusion categories with
trivial twist are essentially representation categories of finite supergroups. If the
dimensions of all objects are required to be positive, the supergroup is in fact a
group. So the case studied here is not much more restrictive than demanding that C
be a symmetric fusion category.

8.4 Invariants from group homomorphisms

It is natural to consider generalising the Dijkgraaf-Witten examples by replacing the
group G with a homomorphism φ : P → G. Any homomorphism can be factored
into a surjective homomorphism followed by an inclusion, as P → Imφ→ G. Taking
the categories of unitary finite-dimensional representations leads to a functor

φ∗ : Rep(G)→ Rep(P )

given by composition with φ. It factors into functors A : Rep(G) → Rep(Imφ)

followed by B : Rep(Imφ) → Rep(P ). The first functor A is a restriction functor,
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which is a dominant functor. This follows from the fact that any Imφ-representation
ρ is a subobject of A(Ind ρ), where Ind is the induction functor to P -representations.
The second functor B is a full inclusion.

Trivial braiding

The first case to consider is when Rep(P ) is augmented with the trivial braiding
and trivial twist to make it a ribbon category, as in the Dijkgraaf-Witten invariant.
Let F : Rep(P ) ↪→ D be a full ribbon inclusion of Rep(P ) with the trivial ribbon
structure into a modular category.

Then the invariant IF◦φ∗ generalises the Dijkgraaf-Witten invariant in principle but
its evaluation is the same as a Dijkgraaf-Witten invariant. Indeed F ◦φ∗ = F ◦B ◦A.
But A is dominant unitary and can be cancelled using Proposition 6.1, while F ◦B is
a full ribbon inclusion of Rep(Imφ) in D, and so defines a Dijkgraaf-Witten invariant.
Despite the fact that the invariant is not new, the construction is still inter-

esting because it may be a starting point for physical models. Just as in Propo-
sition 8.1, the invariant can be calculated in the category Rep(P ). The object
labels are simple objects Xi ∈ Rep(G) and the morphism labels are a basis in
Rep(P ) (φ∗X1 ⊗ . . .⊗ φ∗XN , I), or its dual space. The invariant is evaluated using
the representation p 7→ φ∗µC[G](p) = µC[G](φ(p)) with trace

trµC[G] (φ(p)) = |G|δ (φ(p))

using the delta-function in G. The projection morphisms are

1

|P |
∑
p

µ (φ(p)) .

Since the functor F is a full inclusion, the multiplicity n is just the multiplicity of I
in φ∗C[G]. This can be calculated as n = |G|

|Imφ| . The formula for the invariant is thus

IF◦φ∗(M) =
1

|Kerφ|h1
∑
p1∈P

∑
p2∈P

· · ·
∑
ph1∈P

∏
2-handles k

δ
(
φ(pr1pr2 · · · prmk )

)
(8.4.1)

Immediately, one can see that one can replace the δ-function in G by the one in Imφ

without changing the value of the invariant. Also each group element φ(p) appears
exactly |Kerφ| times, cancelling the normalisation. Thus one sees explicitly that the
manifold invariant is the Dijkgraaf-Witten invariant of the subgroup Imφ ⊂ G.
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Non-trivial braiding

A different construction from a group homomorphism is to consider cases where
Rep(P ) is augmented with a non-trivial braiding. Then one can consider the invariant
Iφ∗ directly, without needing the inclusion into a modular category. (Of course this
also works with the trivial braiding, but then Iφ∗ can be postcomposed with the fibre
functor to vector spaces, Proposition 6.1 can be applied, and the invariant is equal
to 1.)

Example 8.15. If φ : P → G is injective, then Iφ∗ = I1Rep(P )
, which is a Broda invariant

for the category RepP and depends only on the Euler number and signature of the
four-manifold.

Example 8.16. If φ : P → G is surjective, then Iφ∗ is a Petit dichromatic invariant.

Simple examples arise from P = Zn, the cyclic group of order n with the anyonic
braiding [Maj00, Example 2.1.6] and the pivotal structure from Vect. The irreducible
representations are one-dimensional and also labelled by Zn. The braiding on two
irreducibles k, k′ is

x⊗ y 7→ e
2πi
n
kk′y ⊗ x

and so the transparent objects are k = 0, and also k = n/2 if n is even. In the
case that n is odd, Rep(Zn) is modular and so the invariant of Example 8.16 only
depends on Rep(G) with its induced ribbon structure. It is a Crane-Yetter invariant.

There are many more possible braidings [Dav97] and it seems an interesting project
to explore the corresponding constructions of the invariant and Crane-Yetter models,
which is left for future work.

9 Relations to TQFTs and physical models

This discussion section is written in a more informal style.
The invariants defined in this paper are related to various physical models. It is not

just the value of the invariant that is important but also its construction in terms of
data on simplices or handles. This is because in a physical model one is interested in
features that are localised to lower-dimensional subsets, such as boundaries, corners
or defects associated to embedded graphs, surfaces or other strata. In some cases
it is possible to identify this data as the discrete version of a field in quantum field
theory. In summary, the same invariant can extend to lower dimensions in different
ways.
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9.1 TQFTs from state sum models

Whenever there is a state sum formula for IF , that is, when D is modular, it is
possible to cast it in the form of a Topological Quantum Field Theory (TQFT) Z,
following a standard recipe [TV92].

• For a boundary manifold M3 with a given triangulation ∆, define the set of
labellings L(M,∆) exactly like for the state sum model in Definition 7.1. Then
define the free complex Hilbert space Y (M,∆) := C[L(M,∆)].

• For a cobordism Σ4 : M1 →M2 with triangulation ∆, the transition amplitude
〈l1|U(Σ,∆) |l2〉 is defined for the basis vectors coming from l1,2 ∈ L (M1,2,∆|1,2)

via the state sum: Sum over all labellings of Σ that have l1 and l2 as boundary
conditions. This gives a linear map U(Σ,∆): L (M1,∆|1)→ L (M2,∆|2). It is
independent of the triangulation in the interior.

• Z assigns to an object M3 the image of U(I × M). These spaces can be
identified for different triangulations in a coherent way, again using cylinders.
The resulting vector space is then independent of the triangulation of M .

• Z on morphisms Σ is defined by the restriction of U to the aforementioned
spaces. Since a cylinder can always be glued to a cobordism without changing
its isomorphism class, this is well-defined.

9.2 Walker-Wang models

By the previous subsection, Petit’s dichromatic invariant IF for a full inclusion
F : C ↪→ D into a modular category extends to a Topological Quantum Field Theory
Z. More precisely, for a closed cobordism Σ4,

Z(Σ) =
ĈY C(Σ)

d(ΩC)
1−χ(Σ)

(9.2.1)

The denominator d(ΩC)
1−χ(Σ) is provided by comparison to the Crane-Yetter state

sum (8.1.1).
It is believed that Walker-Wang TQFTs [WW12] are the Hamiltonian formulation

of Crane-Yetter TQFTs.
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This would imply that the dimensions of these state spaces for boundary manifolds
M3 can be calculated:

dimZ(M) = tr1Z(M)

= Z
(
S1 ×M

)
=
IC (S1 ×M)

d(ΩC)
(9.2.2)

Non-trivial values of the invariant for manifolds of the form S1 ×M3 can then be
interpreted as dimensions of state spaces of the corresponding TQFT. Comparing
with Section 8.2 shows that these dimensions can indeed be greater than 1, as in the
example of Broda’s refined invariant.

As an example, forM = S1×S2, one arrives at dimZ(S1×S2) = |ΛC′ |. This result
is in excellent agreement with the analysis of Walker-Wang ground state degeneracies
in [CBS13]. The state space of a TQFT corresponds to the space of ground states of
the Hamiltonian.
If C ' Rep(G) for G a finite group, the dimensions can be calculated explicitly,

recalling Section 8.3:

ĈY Rep(G) (S1 ×M)

d(ΩC)
=
|{φ : π1 (S1 ×M)→ G}|

|G|

=
|{φ : Z× π1(M)→ G}|

|G|

=
|{(φ : π1(M)→ G, g ∈ G) |φ = gφg−1}|

|G|
(By Burnside’s lemma) =

∣∣{φ : π1(M)→ G} /φ ∼ gφg−1
∣∣ (9.2.3)

The state spaces are thus spanned by conjugacy classes of connections on the boundary
manifolds, as one would expect if ĈY Rep(G) extends as a Dijkgraaf-Witten TQFT.

9.3 Quantum gravity models

General relativity can be formulated in terms of connections and so it is natural
to construct state sum models, or more generally quantum invariants of manifolds,
that are modelled on connections. Usually the groups are Lie groups, but their
representation categories are not fusion since the number of irreducibles is not finite.
As a toy model therefore one can replace the Lie groups by finite groups to get an
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easy comparison with some of the invariants constructed above. A more sophisticated
resolution of this problem is to use instead representations of quantum groups at a
root of unity, which are indeed fusion categories. Finite groups are discussed here
first and then some comments on the obstruction to using quantum groups in a
similar way are made below.

Cartan connections can be thought of as principal G-connections that allow only
gauge transformations of a subgroup P ↪→ G. One of the motivations for the
development of the generalised dichromatic invariant was the hope of arriving at
a state sum model that could be interpreted as quantum Cartan geometry. Since
there are formulations of general relativity in terms of Cartan geometry (see e.g.
[Wis10]), this would give an interesting new approach to quantum gravity. However
the constructions in Section 8.4 based on an inclusion P ↪→ G do not appear to lead
to interesting new models.

A closely related construction is teleparallel gravity. This is based on a surjective
homomorphism P → G with kernel N . According to Baez and Wise [BW12, theorem
32] the data for teleparallel gravity is a flat G-connection and a 1-form with values
in the Lie algebra of N . For them, P is the Poincaré group and N the translation
subgroup, but here the groups are allowed to be more general.
A flat G connection is easily described as an assignment of an element g ∈ G to

each 1-handle with a relation on each 2-handle, as in the Dijkgraaf-Witten model.
The discrete analogue of the 1-form is the assignment of an element n ∈ N to
each 1-handle, with no relations on this data. For finite groups, this is exactly the
data that is summed over in (8.4.1), the invariant associated to the homomorphism
φ : P → G that has kernel N . Two elements p, p′ ∈ P such that φ(p) = φ(p′) differ
by an element p−1p′ ∈ N . This is the discrete analogue of the fact that the difference
of two connection forms on a manifold is a 1-form. Thus the construction in (8.4.1) is
a plausible finite group analogue of a sum over configurations of teleparallel gravity.

Quantum groups

Classical geometry works with Lie groups, which have an infinite number of irreducible
representations. One hope would be to use quantum groups at a root of unity as a
regularisation. However, few Lie group homomorphisms carry over to quantum groups.
There are many examples of subgroups of Lie groups, but fewer sub-quantum groups
of quantum groups are known. This is because most Lie group homomorphisms do
not preserve the root system of the Lie algebras and thus neither the deformation.
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And even for Hopf algebra homomorphisms, the restriction functor is not necessarily
pivotal:

Example 9.1. As an example of a restriction functor that isn’t pivotal, consider the
category of tilting modules of Uqsl(2) at an n-th root of unity. Its simple objects are
spins j ∈ {0, 1

2
, . . . }. Recall that C[Zn] is a sub-Hopf algebra of Uqsl(2). Recalling

that S2 = SU(2)/U(1), one would hope that this Hopf algebra inclusion serves as
Cartan geometry with a quantum 2-sphere.

The irreducible representations of C[Zn] are Fourier modes . . . ,−1, 0, 1, . . . . Con-
sider the restriction functor of representations, Res. It is obviously monoidal. Then
Res

(
1
2

)
= −1 ⊕ 1. Both summands are invertible and thus have dimensions 1,

whereas the quantum dimension of 1
2
is generally not even an integer. Thus Res does

not preserve quantum dimensions and can’t be pivotal.

The crucial problem here is that the inclusion does not map the spherical element
of C[Zn], which is 1, onto the spherical element of Uqsl(2). A quantum group
homomorphism of spherical quantum groups that preserves the spherical elements
always gives rise to a pivotal functor on the representation categories [BMS12,
Example 8.5]. However, no such homomorphism that gives rise to an invariant that
is not a combination of the previously studied cases is known to the authors.

Spin foam models

Spin foam models are state sum models for quantum gravity constructed using
representations of a quantum group, originally the “spins” of Uqsl(2), hence the name.
Starting with a Crane-Yetter state sum, a popular strategy in spin foam models
is to impose constraints on the labels on the triangles and tetrahedra to mimick
approaches to gravity as a constrained BF -theory [Bae00]. The unconstrained theory
corresponds to the Crane-Yetter state sum, and different quantisation strategies of
the classical constraints lead to different constraints, like in the Barrett-Crane [BC98]
or the EPRL-model [Eng+08]. However, in these models the constraints on objects
and morphisms typically spoil the monoidal product and so are not examples of the
constructions presented here. An interesting question is whether it is possible to
construct spin foam models of the type considered here, for example a spin foam
model for teleparallel gravity. Such a model would involve studying the question of
whether there are interesting quantum group analogues of a surjective homomorphism
of groups.
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9.4 Nonunitary theories

There are two possibilities to arrive at a theory which might be more general than
the Crane-Yetter model. The first is to drop the assumption of the target category
being modularisable; however this is a mild assumption which only specialises from
supergroups to groups. Alternatively, when dropping the assumption that the
categories are unitary, Lemma 6.3 is not applicable any more. To the knowledge
of the authors, it is not known whether for a dominant pivotal functor will always
satisfy FΩC = n · ΩD, so a counterexample might lead to an invariant that can’t be
reduced to a Crane-Yetter model.

9.5 Extended TQFTs

It is a common assumption that the Crane-Yetter model for modular C is an invertible
four-dimensional extended TQFT. According to the cobordism hypothesis, it should
correspond to an invertible (and therefore fully dualisable) object in a 4-category. The
4-category in question has as objects braided monoidal categories, as 1-morphisms
monoidal bimodule categories (with an isomorphism between left and right action
compatible with the braiding), as 2-morphisms linear bimodule categories, and
furthermore bimodule functors and natural transformations.
A ribbon fusion category C acting on itself as a mere fusion category M from

left and right should be an example for a fully dualisable, potentially noninvertible
object. The object is C itself, while its dualisation data on the 1-morphism level
is the bimodule data ofM. Being a fusion category,M is a bimodule over itself,
giving the 2-morphism level of dualisation. The higher levels of dualisation should
correspond to finite semisimplicity.
As has been suggested recently [HPT15, Section 3.2], a good notion of monoidal

bimodule over a braided category is a braided central functor from C to M, i.e.
a braided functor F : C → Z(M). One would expect that the extended TQFT
corresponding to such a bimodule is an extension of our (properly normalised)
invariant for F , whenever it is also pivotal. And indeed, the inclusion C → Z(C)
yields the Crane-Yetter model for C.
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10 Outlook

The generalised dichromatic invariant is a very versatile invariant in that it contains
many previously studied theories as special cases. Table 10.1 gives an overview which
functors give rise to several special cases. The generalised dichromatic invariant

Model Pivotal functor F Discussion

Uqsl(2)-Crane-Yetter state
sum, Broda invariant

1C : C → C for C the tilting modules
(spins) of Uqsl(2)

Example
5.14

Refined Broda invariant with
q = eiπ/4

Canonical inclusion C ↪→ D for C '
RepZ2 generated by spins {0, 1}
and D all spins

{
0, 1

2
, 1
} Sections

8.2, 5.5 and
9.2

Refined Broda invariant,
Crane-Yetter model for
integer spins

Canonical inclusion C ↪→ D for C
integer spins and D all spins

Sections 8.2
and 5.5

Dijkgraaf-Witten TQFT for a
finite group G

Any full inclusion of Rep(G) into
a modular category, e.g. canonical
inclusion Rep(G) ↪→ Z(Rep(G))

Sections 8.3
and 9.2

General Crane-Yetter state
sum, Walker-Wang TQFT for
C any ribbon fusion category

Any full inclusion of C into a mod-
ular category, e.g. canonical inclu-
sion C ↪→ Z(C)

Sections 8.1
and 9.2

Petit’s dichromatic invariant Any full inclusion F : C ↪→ D for C
and D ribbon fusion categories

Example
5.15

“Generalised dichromatic state
sum models”

Any functor into a modular cate-
gory

Section 7.2

Table 10.1: Overview of the known special cases of the generalised dichromatic
invariant, up to a factor of the Euler characteristic.

is at least as strong as the Crane-Yetter invariant, which is stronger than Euler
characteristic and signature, although it is not known how strong exactly. If the
additional constraints that the pivotal functor is unitary and the target category is
modularisable are imposed, the generalised dichromatic invariant is exactly as strong
as CY . In this situation, an upper bound for the strength of the state sum formula
is probably given in [Fre+05]: Unitary four-dimensional TQFTs cannot distinguish
homotopy equivalent simply-connected manifolds, or in general, s-cobordant mani-
folds. It remains to be demonstrated whether it is possible to construct a stronger,
nonunitary TQFT with the present framework.
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It is indicated in the literature [WW12] that the Walker-Wang model – and
therefore also CY – for an arbitrary ribbon fusion category should factor into CY of
its modularisation and its symmetric centre. The former reduces to the signature
and the latter has been shown here to depend only on the fundamental group in the
case of the symmetric centre being just the representations of a finite group. With
the present framework, the conjecture can be formulated precisely:

Conjecture 10.1. Let C be a modularisable ribbon fusion category with C ′ its
symmetric centre and C̃ its modularisation. Then ĈY C = ĈY C′ · ĈY C̃.

The case of supergroups has not been treated here, but one would not expect it to
differ much, except possibly a sensitivity to spin structures in the same manner as in
the refined Broda invariant (Section 5.5).

The question whether the general case of the framework presented here is stronger
than the mentioned special cases still remains open. Either way, motivated from
solid state physics and TQFTs it would still be interesting to study how defects
behave in the new models.
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Part III

Half-ribbon categories
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Figure 11.1: The balance equation relates the twist and the square of the braiding
by a regular isotopy.

11 Introduction

Many braided monoidal categories carry a specific automorphism θ of the identity
functor, the twist, which satisfies a compatibility equation with the braiding c, called
the balance equation. It was introduced as (2.1.21) and will be recalled here:

θX⊗Y = cY,XcX,Y (θX ⊗ θY ) (axcθ)

This equation is most immediately understood in terms of its graphical representation,
which is seen in Figure 11.1. The twist contains the complete information about the
square of the braiding. It is natural to ask whether there is a “square root” of (axcθ),
i.e. a square root of θ which contains the full information about braiding.

In the theory of Hopf algebras, such square roots are known for certain deformed
universal enveloping algebras since [KR90] and [LS91] and have been studied in
the context of ribbon Hopf algebras more recently [ST09]. The category theoretic
viewpoint was left open at the time, though.

With another glance at Figure 11.1, it is convincing that a square root of the twist
would have to be represented graphically by a half-twist1, i.e. a turn of a ribbon
(or several ribbons) by π. This ansatz seems to turn out in our favour: Figure 11.2
shows us how we would define the braiding in terms of a half-twist of two ribbons and
half-twists of the individual ribbons. But a big question is glaring at us: What object
in the category is represented by the back side of the ribbon? One possible answer
is given by the graphical calculus of involutive monoidal categories, as defined in
[Egg11], where half-twists in such categories are introduced as well. (Another answer

1Compare, for example, the following question asked on mathoverflow:
http://mathoverflow.net/questions/28143/180°-vs-360°-twists-in-string-diagrams-for-ribbon-
categories/204668
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=

Figure 11.2: Turning two ribbons by π braids them.

are Selinger’s “self-duality structures” [Sel10], which deserve separate treatment.)

The development of twists in braided monoidal categories with duals culminates
in the notion of a “ribbon category”, where the twist is compatible with the duals in
the category. Such categories are ubiquitous in mathematical physics. However, the
corresponding compatibility between half-twists and duals has only been addressed
for the quantum group case in some terse remarks in [ST09]. This gap is filled here
by half-ribbon categories in Definition 13.14.
Many other parts of the infrastructure of half-twists are presented here, such as

half-twist preserving functors, strictification, compatibility with †-categories and a
universal half-twist construction for balanced involutive categories.

The original motivation for the author to study half-twists was, maybe surprisingly,
Noncommutative Geometry (NcG) in the sense of Alain Connes, or in particular,
spectral triples [Con96]. A spectral triple consists of a unitary module of a ?-algebra,
a real structure on the module, a Dirac operator and certain further structures and
axioms which we will not detail here.

It is desirable to study spectral triples internal to a category, for example Z2-graded
vector spaces or the representations of a quantum group, to study supersymmetric
NcG or geometries with a quantum group symmetry, respectively. But what is a
?-algebra internal to a category? How do we abstract a real structure, and unitarity
of the algebra action? The answer can be given in terms of involutive monoidal
categories.
A half-twist is not immediately implied yet, but by studying the surprising cor-

respondence between two-dimensional spin state sum models and spectral triples,
a graphical calculus for NcG involving half-twists has been found by John Barrett
(unpublished, in preparation). The half-twist represents the real structure on the
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module as well as the ?-operator on the algebra, and allows many axioms of spectral
triples to correspond to isotopies of ribbons.
One has to require the spectral triple to be finite-dimensional (or, in categorical

terms, dualisable), which is a smaller restriction than one might think, as it includes
many special cases such as the fuzzy sphere [Mad92].

11.1 Outline

In Section 12, involutive monoidal categories are introduced. For the first two
subsections, we mainly reproduce material from [Egg11] and [BM09], with the
exception of one new example, namely involutive structures stemming from balanced
monoidal categories. Subsequently, †-categories enriched in involutive monoidal
categories are defined. An equivalent definition was already found by Egger, but
unfortunately not published. We also revise the involutive structures coming from
pivotal †-categories. We then present the known graphical calculus of involutive
monoidal categories and its compatibility with braidings. To conclude, the new
notion of involutive pivotal category is introduced, which will be expanded upon in
the following section.

Section 13 is devoted to half-twists. In the first subsection, the definition and the
most important properties from [Egg11] are recalled initially. We end by introducing
half-twist preserving functors. Then, the main new concept is defined: Half-ribbon
categories, which are involutive pivotal categories with a half-twist that is compatible
with duals in a suitable sense. Such categories are shown to be indeed ribbon
categories and to enjoy an intuitive graphical calculus. After defining half-twists
in †-categories, examples are presented. In the remaining two subsections, some
general constructions are presented. Half-twists can be, in a sense, strictified, and
the implications of this finding are discussed. Finally, a general construction of a
half-twist from a balanced involutive category is shown.

Open questions and ongoing research are discussed.

In this part, extra care is taken to differentiate the contributions of different
authors to the field, since a lot of the material has been published several times
independently. Furthermore, the relevant prerequisites will be supplied throughout
the sections, so introductory parts and new results will sometimes be interleaved.

All content (such as definitions and theorems) by other authors is clearly labelled
at the beginning of a block, and often only adapted in order to cohere with the
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conventions chosen here. Everything unlabelled is original content or new connections
between known concepts.

Note also that in this part, we will usually not assume the blackboard framing as
before, and therefore render most diagrams in ribbons.

12 Involutive monoidal categories

12.1 Generalising involutive monoids

Involutive monoids are ubiquitous in mathematics [Egg11, Examples 3.3]. Typical
examples are the diverse notions of ?-algebras, where the involution is an antilinear
anti-automorphism. One may ask how involutive monoids arise as internal objects of
a category, and what structure such a category must carry.

For mere monoids, the answer is well known [BD97, Section 2.2] as the microcosm
principle: We must first categorify the notion of a monoid to arrive at monoidal
categories, and then we can define what an internal monoid is.
For involutive monoids, one could be puzzled first, since in some examples like

?-algebras, the involution is not even a morphism itself (as for example an antilinear
map in the category of vector spaces and linear maps). Yet there exists a microcosm
principle for involutive monoids [Jac12]. They have to be (vertically) categorified to
involutive monoidal categories, and the riddle will be solved.

It is possible to horizontally categorify involutive monoids to †-categories2, as
well. The total situation, together with the relevant data, is displayed in Figure 12.1,
and will be explained in detail in this section. The only omission will be involutive
bicategories: They are not spelled out explicitly in the literature, nor will they appear
here, since they are a straightforward generalisation of involutive monoidal categories.

Definition 12.1 (Folklore). Let (M,− · − : M ×M →M, 1 ∈M) be a monoid, i.e.
M a set and − · − an associative operation with unit 1. An involution for M is a
function ? : M →M , usually superscripted, satisfying for any m,n ∈M :

n? ·m? = (m · n)?

2Ironically and confusingly, †-categories have been called “categories with involution” in the past
[Bur70].
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Involutive monoid
M ∈ Mon

? : M →M

m?n? = (nm)?

m?? = m

Involutive monoidal category

C ∈ MonCat

( ) : C → C
χX,Y : X ⊗ Y → Y ⊗X

εX : X → X

†-category
C ∈ Cat

†X,Y : C(X, Y )→ C(Y,X)

f †g† = (gf)†

f †† = f

Involutive bicategory

categorification

horizontal
categorification

Figure 12.1: Horizontal and vertical categorification of involutive monoids

m?? = m

Lemma 12.2 (Well-known). The following is a sometimes forgotten lemma for
involutive monoids:

1 = 1?? = (1? · 1)? = 1? · 1?? = 1? · 1 = 1?

Again, it can be categorified in two ways: For involutive monoidal categories, it will
yield a coherence isomorphism and an involutive monoid structure for the monoidal
identity I, and for †-categories, it will yield a lemma for the identity morphisms of
every object.

12.2 Involutive monoidal categories

Definition 12.3 ([Egg11, Definition 2.1]). Let C = (C,−⊗−, I, α, λ, ρ) be a monoidal
category. An involutive structure or involution for C consists of:

• A functor ( ) : C → C,

• a natural isomorphism χX,Y : X ⊗ Y → Y ⊗X,
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• a natural isomorphism εX : X → X,

satisfying the commutativity of the following diagrams:

(
X ⊗ Y

)
⊗ Z X ⊗

(
Y ⊗ Z

)
Y ⊗X ⊗ Z X ⊗ Z ⊗ Y

Z ⊗ (Y ⊗X) (Z ⊗ Y )⊗X

αX,Y,Z

χX,Y ⊗1Z 1X⊗χY,Z

χY⊗X,Z χX,Z⊗Y

αZ,Y,X

(F3)

X ⊗ Y X ⊗ Y

Y ⊗X

X ⊗ Y X ⊗ Y

εX⊗εY

χX,Y

χX,Y

εX⊗Y

(N2)

X

X

εXεX

(A)

A monoidal category with an involutive structure is an involutive monoidal cate-
gory.

Remark 12.4. From here, we will usually suppress the familiar monoidal coherences
α, ρ and λ, while explicitly writing out the involutive coherences χ or ε, even though
it will turn out that they can be strictified.

The same notation will be used in all categories occurring, no confusion will arise.

Remark 12.5. It may come as a surprise that the involution functor is covariant,
and not contravariant. But the wealth of natural examples for involutive monoidal
categories suggest that the present definition is a good one.
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A supposed contravariant involution functor would behave very similar to a dual
functor with a pivotal structure, which can be related to an involutive structure only
by means of an additional †-structure. This is discussed in Section 12.3.

Remark 12.6 ([Egg11, Remark 2.5]). The definition of involutive monoidal category
is equivalent to that of a “strong bar category”, as defined by Beggs and Majid in
[BM09]. The term “involutive monoidal category” is preferred here, since it refers to
the algebraic content of the definition, while “bar category” merely reflects its syntax.

Lemma 12.7 ([Egg11, Lemma 2.3]). Lemma 12.2 can be categorified to give the
following canonical morphism χ̊:

I
ε−1
I−−→ I

ρI
−1

−−→ I ⊗ I
χ−1

I,I−−→ I ⊗ I
1I⊗εI−−−→ I ⊗ I

ρI−→ I (defχ̊)

For more properties of this morphism, consult [Egg11, Lemma 2.3].

Remark 12.8 (Ehud Meir, in a private conversation). If we disregard the monoidal
structure and χ, then ( ) and ε constitute an involutive category, as studied e.g. in
[Jac12, Definition 2.1] and the references therein. Such a structure is exactly the
same as a Z2-action.

Examples

Example 12.9 ([Egg11, Section 1]). Let C be a symmetric monoidal category with
braiding c. Then (1C, c, 11C) is an involutive structure.

Example 12.10 ([Egg11, Example 2.2]). Let k be a ring with involution ?, for example
C or H. Then the monoidal category of bimodules over k has a natural involutive
structure. For a bimodule M with left and right actions − .− and − /−, we choose
for M the same underlying abelian group, and annotate its elements m,n, . . . with
an overline. The left action of M is defined to be the right action of M , precomposed
with the involution ?, and vice versa for the right action of M :

a . m := m / a? (12.2.1)

m / a := a? . m (12.2.2)

The functor ( ) acts trivially on morphisms. The coherence isomorphism ε is simply
the identity, and χ(m⊗n) = n⊗m. It is easy to see that χ̊ = ?, where k is regarded
as a bimodule over itself.
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Proof. The newly defined left action is associative again:

a . b . m = (m / b?) / a? = m / (b?a?) = m / (ab)? = ab . m (12.2.3)

All further axioms have analogous proofs and are left as exercises.

Example 12.11 ([Egg11, Example 2.2]). Complex vector spaces, VectC, are an impor-
tant special case of the previous example. For a complex vector space V , we define V
as the same underlying abelian group, but the scalar multiplication differs. With µV
the multiplication of V and µV the multiplication of V , we set µV (λ, v) := µV

(
λ, v
)
,

where v ∈ V, λ ∈ C and λ is the complex conjugate.
The coherences are ε(v) = v, χ(v ⊗ w) = w ⊗ v and χ̊(λ) = λ.
Note that this is not the same involutive structure as the one arising from the

symmetric structure.

Example 12.12 ([BM09, Example 2.3]). Let A be a complex ?-algebra. The monoidal
category of A-bimodules has an involutive structure as well. It is defined as in 12.10,
except that for the underlying vector space of M , we choose the complex conjugate
vector space of M .

Remark 12.13. The previous example can be generalised to bimodules of involutive
monoids internal to any involutive monoidal category with sufficient colimits, although
the details will not be carried out here.

Example 12.14 ([BM09, Proposition 3.1]). The category of Yetter-Drinfeld modules
of a ?-Hopf algebra has an involutive structure. In the cited paper, more ?-Hopf
algebra examples can be found.

Example 12.15. Let C be a balanced monoidal category, with braiding c and twist θ.
Then (1C, c, θ) is an involutive structure.

Proof. (F3) is the Yang-Baxter equation, rewritten with the braid axioms. (N2) is
the balance equation (axcθ) from page 77. Axiom (A) becomes a tautology.

Involutive monoidal functors and natural transformations

Definition 12.16 ([Egg11, Definition 3.2]). An involutive monoidal functor be-
tween involutive monoidal categories consists of a strong monoidal functor (F, F 2, F 0)
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and a natural isomorphism FX : FX → FX satisfying the following two axioms:

FX ⊗ FY FX ⊗ FY F
(
X ⊗ Y

)
FY ⊗ FX F (Y ⊗X) F

(
Y ⊗X

)χFX,FY

FX⊗FY F 2
X,Y

FχX,Y

F 2
Y,X FY⊗X

(axFχ)

FX FX

FX FX

FX

εFX FX

FεX

(axFε)

An involutive natural transformation β : F ⇒ G is a monoidal natural transfor-
mations which is compatible with F and G in the following way:

FX GX

FX GX

FX

βX

GX

βX

(12.2.4)

Theorem 12.1 ([Egg11, Corollary 3.6]). Every involutive monoidal category is
involutively equivalent to a strict involutive monoidal category, i.e. one where the
monoidal and involutive coherence morphisms are identities.

Internal involutive monoids

Definition 12.17 ([Egg11, Definition 5.5]). An involutive object in an involutive
monoidal category is a pair (X ∈ ob C, τ : X

∼=−→ X) such that εXττ = 1X . The
morphism τ is called involution.

Remark 12.18. Equivalently, an involution can be defined as a morphism from X to
X. (In an involutive category, C(X,X) ∼= C(X,X) canonically by application of ( )

and composition with ε.) The definition presented here follows the convention from
[Egg11].

Example 12.19. In VectC, an involutive object is a complex vector space with a real
structure, i.e. an antilinear involution.

Remark 12.20 ([Egg11, Remark 5.7]). Involutive objects are also called “?-objects”
[BM09, Definition 2.10], and “self-conjugates” [Jac12, Definition 3.1].
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Definition 12.21 (Well-known, e.g. [BD95]). Let (C,− ⊗ −, I) be a monoidal
category. A monoid internal to C consists of:

• An object M in C,

• a morphism − · − : M ⊗M →M , the “multiplication”,

• and a morphism e : I →M , the unit.

The multiplication − · − is associative and has e as a right and left unit.

Definitions 12.22 ([Egg11, Example 3.3], [BM09, Definition 2.18, “star algebra”],
[Jac12, Definition 5.1, “reversing”]). Let (C,−⊗−, I, ( ), χ, ε) be an involutive mo-
noidal category.

• Let (M,− · −, e) be a monoid internal to the underlying monoidal category.
The opposite monoid is defined as

(
M, (− · −) ◦ χ, e ◦ χ̊

)
, and abbreviated

as M . It is a routine exercise to see that M is a monoid.

• An involutive monoid internal to C is a monoid (M,− ·−, e) internal to C
which is also an involutive object in a compatible way, i.e. it carries a monoid
homomorphism ? : M →M , such that εM?? = 1M .

Examples 12.23. An ordinary involutive monoid is an internal involutive monoid in
Set, with the standard involutive structure from Example 12.9.
Real ?-algebras are involutive monoids internal to real vector spaces. Complex

?-algebras are involutive monoids internal to complex vector spaces, with complex
conjugation as involutive structure.

12.3 †-categories

Definition 12.24 ([Sel07, Definition 2.2]). A †-category is a category C and, for
each two objects X, Y , a map:

†X,Y : C(X, Y )→ C(Y,X)

We will drop the subscripts X and Y and denote it superscripted:

f † := †X,Y (f)
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The †-structure has to satisfy these axioms:

g†f † = (fg)†

f †† = f

A †-functor is an ordinary functor F satisfying F (f †) = (Ff)†.

Remark 12.25 (Folk wisdom). A common, equivalent, definition of †-categories is
that of an identity-on-objects contravariant endofunctor that squares to the identity.
The requirement of † as a functor being the identity on objects is often regarded as
“evil”, since sameness of objects is not preserved by isomorphism.

The definition presented here looks at †-structures in a different way, namely as a
categorification of an involution on a monoid. The requirement of f † having source
and target interchanged with respect to f can then be seen as a typing rule, very
similar e.g. to the requirement that a composed morphism f ◦ g has exactly the
same domain as g.

Lemma 12.26 (Well-known). In a †-category, we can horizontally categorify Lemma
12.2 for every object X:

1X = 1†X

Enriching †-categories

†-categories are horizontal categorifications of involutive monoids, and involutive
monoids arise as the endomorphisms of an object in a †-category (in the simplest
case as a †-category with one object). We have seen how to define involutive monoids
internal to involutive monoidal categories, so it is natural to ask whether internal
involutive monoids can be seen as endomorphism objects in enriched †-categories.
Basic knowledge of enriched categories is assumed for this part.

Definition 12.27. Let V an involutive monoidal category. A †-category enriched
in V is a category C enriched in V, and for every two objects X, Y ∈ ob C an
isomorphism †X,Y : C(X, Y )→ C(Y,X) in V making the following diagrams commute:

C(X, Y ) C(Y,X) C(X, Y )
†X,Y

εC(X,Y )

†Y,X
(axenr
†† )
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C(Y, Z)⊗ C(X, Y ) C(Z, Y )⊗ C(Y,X)

C(Y,X)⊗ C(Z, Y )

C(X,Z) C(Z,X)

−◦−

†Y,Z⊗†X,Y

χC(Z,Y ),C(Y,X)

−◦−

†X,Z

(axenr
◦† )

An enriched †-functor is an ordinary enriched functor F satisfying:

C(X, Y ) C(Y,X)

D(FX,FY ) D(FY, FX)

†X,Y

FX,Y FY,X

†FX,FY

(12.3.1)

FX,Y is the action of the functor on the hom-object.

Remark 12.28. An equivalent definition has been given by Egger at a talk in Oxford
in 2011, unfortunately unpublished. The present definition was derived by the author
independently and is given for the sake of completeness.

Remark 12.29. It is an easy exercise to see that †-categories enriched in Set (with the
involutive structure coming from the symmetric structure) are just ordinary (locally
small) †-categories.

We can also recover from a V-enriched †-category C an ordinary †-category C0 with
the same objects by defining the morphism sets in the following standard way:

C0(X, Y ) = V(I, C(X, Y )) (12.3.2)

The †-structure †0 is defined by the following commutative diagram in V :

I C(X, Y )

I C(Y,X)

f

χ̊ †X,Y

f†0
(def†0)

Remark 12.30. The viewpoint of the underlying ordinary †-category is relevant to
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define essential properties of individual morphisms usually available in †-categories,
such as unitarity, self-adjointness and positivity. For example, a morphism f in
an ordinary †-category is unitary if it satisfies f−1 = f †. An enriched morphism
f : I → C(X, Y ) is unitary if the following diagrams in V commute:

C(X, Y )⊗ C(Y,X)

I C(X,X)

C(Y,X)⊗ C(X, Y )

−◦−f⊗f†0

f†0⊗f

1X

−◦−

Such a definition is important when defining enriched †-categories with additional
structures, such as monoidal, braided, or balanced structures, since these are usually
required to be unitary. Whether it is possible to express unitarity internally, for
example as a subobject Cu(X, Y ) ↪→ C(X, Y ) of unitary morphisms, is a different
matter and will not be explored here.

Examples 12.31. Enriched †-categories are abundant in functional analysis and
quantum algebra.

• A complex ?-category is a †-category enriched in complex vector spaces with
complex conjugation as involutive structure.

• A C∗-category is a †-category enriched in complex Banach spaces with the
projective tensor product, and complex conjugation as involutive structure
satisfying certain axioms, see e.g. [GLR85].

Definition 12.32. Let C be a †-category enriched in an involutive monoidal category
M. For any object X ∈ ob C, the endomorphism object C(X,X) ∈ obM forms
an involutive monoid, with the identity 1X : I → C(X,X) as unit, composition
− ◦ − : C(X,X) ⊗ C(X,X) → C(X,X) as multiplication and †X,X : C(X,X) →
C(X,X) as involution.

Proof. Associativity and unit laws follow directly from the axioms of enrichment.
†X,X is a monoid homomorphism as a consequence of Axiom (axenr

◦† ) from page 88.

Example 12.33. A ?-category is a †-category enriched in VectC with complex conju-
gation as involutive structure. The †-operation is therefore antilinear.
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While the following definition is not new, its formulation in terms of enriched
†-categories and enriched †-functors is.

Example 12.34. Let A be a ?-algebra, and BA its delooping as a ?-category. Fur-
thermore, let C be a ?-category. The category of unitary A-modules in C is the
category of linear †-functors ρ : BA → C. It inherits the complex linear structure
and the †-structure from C pointwise.

Pivotal †-categories

It is maybe surprising that in an involutive monoidal category, the involution functor
is covariant. A more well known categorification of involutions are duals. If a category
is required to be rigid, we can arbitrarily choose a right and left dual for each object.
This defines right and left dual functors ( )∗ and ∗( ) and natural isomorphisms
(X ⊗ Y )∗ ∼= Y ∗ ⊗X∗. If the category is also pivotal, an isomorphism iX : X → X∗∗

exists, so the structure of duals looks suspiciously similar to an involutive monoidal
structure, with the crucial difference that the dual functors are contravariant.

A †-structure, on the other hand, flips the direction of the morphisms, so it seems
natural to combine the two to define an involutive monoidal structure.

Definition 12.35 ([Sel10, Section 7.3]). A monoidal †-category is a †-category
that is also monoidal, such that (f ⊗ g)† = f † ⊗ g† for all morphisms, and the
monoidal coherences are unitary.
A pivotal †-category is a monoidal †-category that is also rigid, such that

f ∗† = f †∗ and the canonical isomorphisms (X ⊗ Y )∗ ∼= Y ∗ ⊗ X∗ and I ∼= I∗ are
unitary.

Such a category has a natural unitary pivotal structure, which we choose.

Lemma 12.36 ([Egg11, Lemma 6.1]). A pivotal †-category has a canonical involutive
monoidal structure. The involution functor is the covariant dual functor ( ) := ( )∗ :=

( )∗†, χ is given by the canonical isomorphisms (X ⊗ Y )∗ ∼= Y ∗ ⊗X∗, and ε is the
inverse of the pivotal structure.

Remark 12.37. “Involution monoids” from [Vic11, Definition 2.20] are involutive
monoids in a pivotal †-category.

Example 12.38 ([Egg11, Section 6]). The category of finite dimensional Hilbert spaces,
Hilbf.d., is pivotal and has a †-structure, therefore it is involutive monoidal.
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Example 12.39. In the category of oriented bordisms in any dimension, the dual of
a boundary manifold is the same manifold with opposite orientation. The dual of
a bordism is simply the same bordism, with source and target exchanged. Thus,
a trivial pivotal structure can be given. The †-structure on a bordism is given by
orientation reversal (and exchange of source and target).

Combining duals and †-structure yields a beautiful involutive monoidal structure:
The involution functor is given by reversing the orientation of the bordism and the
boundary simultaneously (while not exchanging source and target). ε is trivial, and
χ simply interchanges two manifolds.

12.4 Graphical calculus and balanced categories

Monoidal categories have a graphical calculus where morphisms are drawn in the
plane, with composition in the vertical direction and the monoidal product in the
horizontal direction. It can be extended to involutive monoidal categories.
A good graphical calculus should assign a geometrical operation on the diagram

to a functor, such that coherence isomorphisms are invisible, or at least invisible up
to a suitable kind of isotopy. But what geometrical operation can we assign to the
involution functor ( ) such that χX,Y : X ⊗ Y → Y ⊗X is invisible?

Two possibilities spring to mind: Involution could be rotation around the vertical
axis by π, or reflection, again at the vertical axis. The two choices don’t differ for
planar diagrams, but if we introduce braidings and twists, the distinction will matter,
this is discussed in Remark 12.42.
The former, namely rotation around the vertical axis, will turn out to be the

correct graphical representation as soon as we consider half-twists in Section 13.1.
The back side of the ribbon will be represented by a darker shade, as can be seen in
Figure 12.2.

Remark 12.40. The graphical representation of dualisation in a rigid category is
rotation by π around the horizontal axis perpendicular to the plane, and the graphical
representation of a †-structure is reflection at the horizontal axis in the plane, so the
involution has a graphical interpretation which is different from the aforementioned
ones.

Definition 12.41 ([BM09, Definition 4.1], [Egg11, Remark 4.6]). Let C be a balanced
monoidal category with involutive structure

(
( ), χ, ε

)
. C is called a balanced

involutive monoidal category if the braiding c and twist θ are compatible with
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(g ◦ f)⊗ h =

f

g

h

A

C

B

E

D

(g ◦ f)⊗ h =

f

g

h

A

C

B

E

D

Figure 12.2: Graphical calculus of involutive monoidal categories, where the involution
is represented by a rotation around the vertical axis by π. Recall that A⊗D ∼= D⊗A.

the involutive structure, in the sense that they satisfy the following two axioms for
any objects X, Y :

θX = θX (axθ)

X ⊗ Y Y ⊗X

Y ⊗X X ⊗ Y

cX,Y

χX,Y χY,X

cY,X
(axc)

Remark 12.42 ([BM09, Section 4.1], [Egg11, Remark 4.6]). Balanced involutive
structures were originally called “real” balanced structures or braidings. “Antireal”
(or “hermitian”) balanced structures can be defined as well by replacing θX and cX,Y
by their inverses in the axioms (axθ) and (axc).

Remark 12.43 ([Egg11, Remark 4.6], private communication with P. Selinger). The
two graphical representations of the involutive structure – rotation by π and reflection
– correspond to balanced involutive (or real balanced) structures and antireal balanced
structures, respectively. The axioms (axc) and (axθ) verify that the two ways to
interpret the diagram of the braiding (or twist) labelled by objects X and Y coincide.

Examples 12.44. Examples 12.9, 12.11 and 12.15 for involutive monoidal categories
from Section 12.2 are also balanced involutive, as can be easily seen. As a notable
exception, the category of Yetter-Drinfeld modules (Example 12.14) has an antireal
balanced structure [BM09, Example 4.3].

Remark 12.45. From the viewpoint of the graphical calculus, Example 12.15 (con-
structing an involutive structure from a balanced structure) can easily mislead.
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The coherence morphisms χ and ε are invisible graphically, but they are the same
morphisms as braiding and twist, which of course have a visible representation. They
can only be distinguished by the application of the involution functor to objects.

12.5 Involutive pivotal categories

Pivotal categories have a graphical calculus in which morphisms are rotated around
an axis pointing out of the plane. Furthermore, pivotal structures relate left and
right duals. Involutive structures rotate the diagram around a vertical axis, thus
interchanging left and right. Therefore it is interesting to find out how involutive
and pivotal structures can be compatible.

For chosen left and right duals ∗X and X∗ in a rigid category, we will sometimes
suppress the canonical natural isomorphisms lX : X

∼=−→ (∗X)∗ and l̃X : X
∼=−→ ∗(X∗).

For example, we will write i∗X : ∗X → X∗ for the pivotal isomorphism of a left dual.

Definition 12.46 (Well known). Let C be a monoidal category. The monoidal
category Crev has the same underlying category and the reverse monoidal product
X ⊗rev Y := Y ⊗X.

Whenever C is rigid with chosen right and left duals X∗ and ∗X, we choose in Crev

the duals X∨ := ∗X and ∨X := X∗.
Consequently, if C is equipped with a pivotal structure i, the monoidal reverse

category Crev has a canonical pivotal structure ι, which is the inverse of i, up to the
aforementioned isomorphisms X∗∗∨∨ = ∗∗(X∗∗) ∼= X.

Remark 12.47 ([Egg11, Section 4]). An involutive structure on a monoidal category
C gives rise to a monoidal functor ( ) : C → Crev, with coherences χ and χ̊.

This is of course motivated by the graphical calculus of rotation by π (or reflection),
which interchanges the order of objects in a monoidal product.

Lemma 12.48 (Compare [BM09, Proposition 6.2] and [ST09, Comment 4.12]).
For left and right duals in an involutive monoidal category, the following canonical
natural isomorphisms exist:

kX : X∗
∼=−→ X

∨
=
∗
X (12.5.1)

k̃X : ∗X
∼=−→ ∨X = X

∗ (12.5.2)

Proof. ( ) : C → Crev is monoidal and thus preserves duals up to canonical natural
isomorphisms.
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Explicitly: Let X have a right dual, X∗. The following diagram defines a left
evaluation ẽv:

X∗ ⊗X I

X ⊗X∗ I

χX∗,X

ẽv

χ̊

evX

It is easy to see that the corresponding definition of c̃oev satisfies the snake identities.
Thus, X∗ is a left dual for X, and any chosen left dual ∗X is canonically isomorphic
to it.

For k̃, an analogous argument holds.

Corollary 12.49 ([BM09, Proposition 6.2]). An involutive monoidal category which
is left rigid is also right rigid, and vice versa.

Proof. For any object X, we have ∗X ∼= X
∗
as a right dual for X ∼= X.

Definition 12.50. An involutive pivotal category (C,− ⊗ −, I) is an involu-
tive monoidal category with pivotal structure, such that the monoidal functor(

( ), χ, χ̊
)

: (C,−⊗−, I)→ (C,−⊗rev −, I) is pivotal.

Remark 12.51. Again denoting the right dual of an object X in Crev by X∨, pivotality
of ( ) amounts to the following commutative diagram:

X X∗∗

X
∨∨

X∗
∨

iX

ιX kX∗

k∨X
(12.5.3)

In terms of left duals in C, this amounts to:

X X∗∗

(
∗
X
)∗

(
∗∗
X
)∗∗

∗∗
X ∗X∗

iX

lX

kX∗l∗∗
X

∗kX

i∗∗
X

(piv)
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Definition 12.52. In an involutive pivotal category, the following canonical isomor-
phisms exist:

jX : X∗
∼=−→ X

∗ (defj)

They are defined as:

X∗
kX−→ ∗

X
i∗
X−−→
(
∗
X
)∗∗ l∗

X−→ X
∗

Remark 12.53. Since ( ) is pivotal, this is the same as the following alternative
definition:

X∗
l̃X∗−−→ ∗(X∗∗)

∗iX−−→ ∗X
k̃X−→ X

∗

More explicitly, for an object X, construct the following right evaluation ev for X:

X ⊗X∗ I

X∗ ⊗X

X∗ ⊗X∗∗ I

ev

χX,X∗

χ̊

1X∗⊗iX

evX∗

The corresponding coevaluation is easily defined analogously.

Remark 12.54. The natural isomorphisms j, k and l are coherences since they are
defined implicitly in terms of other coherences such as the monoidal or involutive
ones, or the pivotal structure. Therefore, they will be invisible in the graphical
calculus.

13 Half-twists and half-ribbon categories

One motivation for studying half-twists is to have a graphical calculus for ribbons
performing a turn by π, as shown in Figure 13.1. This is possible in involutive
monoidal categories if we represent the involution functor graphically by rotating
the diagram by π: After a ribbon is rotated, its back is in the foreground, and a
half-twist thus constitutes a morphism from the unrotated ribbon to the rotated one,
or vice versa. (The chirality of the half-twist is a matter of convention, we follow
[Egg11].) This graphical idea motivates large parts of this section.

The first subsection recalls the central results from the literature and supplements
them by the new, but straightforward definition of “half-twist preserving functors”.
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In the second subsection, a key issue will be clarified that hasn’t been addressed
sufficiently by the founders of the field. It is the interplay between duals and
half-twists. A rigid, balanced category can satisfy a nontrivial axiom, the “ribbon
equation” (2.1.23). Algebraically, it fixes the value of the twist on dual objects. From
the perspective of diagrams, it describes a compatibility between a turn of a ribbon
by 2π (the twist) and a rotation of a diagram in the plane by π (dualisation). Since
a half-twist is represented by a turn by π, we have to ask the question of a suitable
compatibility law again.
A general theorem that verifies soundness of the resulting graphical calculus

with respect to arbitrary isotopies of ribbons will be deferred to future work. We
will be content with a suitable and natural axiom to impose on half-twists in the
presence of duals, and use the graphical calculus merely as a notational tool to
instantiate morphisms and lemmas. The new notion will then be “half-ribbon
categories” (Definition 13.14), which have a half-twist and satisfy the ribbon axiom.

13.1 Half-twists and their graphical calculus

Definition 13.1 ([Egg11, Definition 4.3]). Let C be an involutive monoidal category,
with involution ( ) and coherence morphisms χ and ε. A half-twist on C is a natural
isomorphism τ : ( )⇒ 1C such that the following two squares commute:

Y ⊗X ⊗ Z X ⊗ Y ⊗ Z X ⊗ Z ⊗ Y

Y ⊗X ⊗ Z X ⊗ Y ⊗ Z X ⊗ Z ⊗ Y

Y ⊗ Z ⊗X Y ⊗X ⊗ Z Z ⊗X ⊗ Y

Y ⊗ Z ⊗X Z ⊗ Y ⊗X Z ⊗X ⊗ Y

Z ⊗ Y ⊗X Z ⊗ Y ⊗X Z ⊗ Y ⊗X

(T l)

τY⊗X⊗1
Z

(T r)

τX⊗τY ⊗τZ

1
X
⊗χY ,ZχX,Y ⊗1

Z

1
X
⊗τZ⊗Y

1Y ⊗χX,Z χX,Y ⊗1Z
χX,Z⊗1Y

1Y ⊗τZ⊗X χY⊗X,Z τZ⊗X⊗1Y

χY,Z⊗1X τZ⊗Y⊗X 1Z⊗χX,Y

τZ⊗Y ⊗1X 1Z⊗τY⊗X

The graphical representation of the axiom is given in Figure 13.2.

Remarks 13.2. In contrast to the original source [Egg11], the monoidal coherences
have been strictified.
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τX =

X

X

τ−1
X =

X

X

τX⊗Y =

X Y

Figure 13.1: Graphical calculus of half-twists.

X Y Z

=

ZYX

=

X Y Z

Figure 13.2: Egger’s axioms T l and T r in diagrammatic calculus. To visualise the
isotopy corresponding to the right hand equation, start with the diagram in the
center, and pick up the right hand strand (labelled with Z) – which is behind the
other strands – at its upper half-twist. Slide the upper half-twist down along the
left strand (labelled with X) until it meets the lower half-twist of X. Then slide the
lower half-twist of Z behind the lower half-twist of Y . For the left hand equation,
an analogous isotopy exists.

In [Egg11], such a structure is called a “twist”. We prefer the term “half-twist“
from [ST09] and reserve “twist” for the structural isomorphism θX : X → X from a
balanced structure.

Lemma 13.3 ([Egg11, Lemma 4.2]). Let τ be a half-twist in an involutive monoidal
category C. Then for any object X in C, the following holds:

τX = τX (lemτ )
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Proof. Naturality of τ applied to τX itself implies:

X X

X X

τX

τX τX

τX

Since τX is invertible, the lemma follows.

Remark 13.4 ([Egg11, Remark 4.6]). If we assume that the correct graphical represen-
tation of τ is a half-twist, then the graphical representation of ( ) must be rotation
by π. To rule out the graphical representation by reflection, simply consider the
statement of the previous lemma, which would be falsified graphically.

To the knowledge of the author, half-twists have been used as graphical represen-
tations of algebraic data only in [ST09], [Sel10] and [Egg11].

Lemma 13.5 ([Egg11, Lemma 4.2]). In an involutive monoidal category C with a
natural transformation τ : ( )→ 1C, the two axioms T r and T l for τ are equivalent.

Thus in the definition of the half-twist, we could choose only one of the two.

Proof. A full proof is given in the cited article. As the key step, the involution
functor is applied to one of the axioms to rotate it by π and arrive at the other
axiom.

Graphical representations of the half-twist on a single strand, its inverse, and a
half-twist on two strands can be seen in Figure 13.1. For the half-twist of two strands,
the diagrammatic calculus forces the left strand to cross the right strand, very akin
to a braiding. Indeed, the only difference to a braiding are the individual twists on
each strand. It therefore seems reasonable to expect that a braiding can be defined
by a half-twist, and this is verified by the following theorem.

Theorem 13.1 ([Egg11, Theorem 4.4]). Given an involutive monoidal category with
half-twist, a balanced structure (cX,Y : X⊗Y → Y ⊗X, θX : X → X) can be defined
by the following commuting diagrams:

X ⊗ Y Y ⊗X

X ⊗ Y Y ⊗X

τX⊗τY

χX,Y

τY⊗X

cX,Y

(defc)
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X ⊗ Y ⊗ Z X ⊗ Y ⊗ Z

X ⊗ Y ⊗ Z X ⊗ Y ⊗ Z

X ⊗ Z ⊗ Y X ⊗ Y ⊗ Z Y ⊗X ⊗ Z

X ⊗ Z ⊗ Y Y ⊗X ⊗ Z

Z ⊗X ⊗ Y Z ⊗X ⊗ Y

1X⊗cY,Z (defc)

cX⊗Y,Z(defc)

1X⊗τY ⊗τZ

1X⊗τZ⊗Y

1X⊗τY ⊗1Z

1X⊗Y ⊗τZ

cX,Z⊗1Y (defc)

τX ⊗ (natτ )

τX⊗1Y ⊗τZ

1X⊗τZ⊗Y

τX⊗τY ⊗τZ

(natτ )⊗ τZ

τX⊗Y ⊗τZ

τ(X⊗Y )⊗Z

τX⊗Y ⊗1Z

τX⊗τZ⊗1Y

τZ⊗X⊗1Y

τX⊗Y ⊗1
Z

τY ⊗τX⊗τZ

(T l)

Figure 13.3: A braid law can be proven each from (T l) and (T r). The case for (T l)
is shown here in the strictified setting, i.e. X ⊗ Y = Y ⊗X and χ is the identity.

X X

X X

τX

εX τX

θX

(defθ)

This balanced structure is compatible with the involutive structure in the sense of
Definition 12.41.

Proof. Since a detailed proof is missing in the literature, we will work through it.
Three axioms have to be proven: The balance equation (axcθ) (page 77), and the
two braid axioms (2.1.18). The latter two are reproduced here, after monoidal
strictification:

X ⊗ Y ⊗ Z

X ⊗ Z ⊗ Y

Z ⊗X ⊗ Y

1X⊗cY,Z

cX⊗Y,Z

cX,Z⊗1Y

X ⊗ Y ⊗ Z

Y ⊗X ⊗ Z

Y ⊗ Z ⊗X

cX,Y ⊗1Z

cX,Y⊗Z

1Y ⊗cX,Z

(axc⊗)

The two braid axioms will follow from (T r) and (T l), respectively. The proof for one
of them is given in Figure 13.3, the other one is analogous. The proof is probably
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X ⊗ Y X ⊗ Y

X ⊗ Y X ⊗ Y

X ⊗ Y Y ⊗X Y ⊗X

X ⊗ Y Y ⊗X

X ⊗ Y Y ⊗X

θX⊗Y (defθ)

θX⊗θY

(defθ)⊗ (defθ)

cX,Y(defc)

εX⊗εY

χX,Y

τX⊗τY

(natχ) χX,Y

τX⊗τY

εX⊗Y

τX⊗Y (natτ )

χY,X

τY⊗X

τY ⊗τX

(natτ )

(N2)

τY⊗X

τX⊗Y

χY,X

τY ⊗τX
(defc)

cY,X

Figure 13.4: The balance law for twist and braiding from a half-twist follows naturally.
It is interesting to note that the coherence isomorphisms cancel through (N2) from
page 82, which itself resembles the balance law.

not too surprising since the definition of the braiding (defc) from page 98 as well
as (T r) and (T l) from page 96 were designed to reproduce the braid axioms. The
more interesting insight is maybe that (T r) and (T l) imply each other, so finding
half-twists is in a sense a more efficient procedure than finding braidings, since fewer
axioms have to be checked.

The key idea for the balance equation is that it is essentially the square of (defc).
The balance equation states that the square of the braiding is the twist of both
objects divided by the twists of the individual objects. Correspondingly, the very
definition of the braiding states that it is the half-twist of both objects divided by the
individual half-twists. The proof is seen in Figure 13.4. The new braiding satisfies
(axc) and is therefore compatible with the involutive structure, by definition of the
braiding and naturality, as is seen in Figure 13.5. The proof of (axθ) is left as an
exercise.

Definition 13.6 ([Egg11, Definition 4.3]). An involutive half-twist is a half-twist
satisfying ε ◦ τ ◦ τ = 11C .

In a category with involutive half-twist, each object is naturally equipped with an
involution.

Lemma 13.7 ([Egg11, Corollary 4.5]). If a half-twist is involutive, then the balanced
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X ⊗ Y Y ⊗X

Y ⊗ Y

Y ⊗X

X ⊗ Y

Y ⊗X X ⊗ Y

cX,Y

(defc)

χX,Y (natχ) χY,X(natτ )

τX⊗τY

τX⊗τY

(lemτ )

χX,Y

χY,X

τY⊗X

τY ⊗τX

τX⊗Y

τX⊗Y

(lemτ )

cY,X

(defc)

Figure 13.5: The braiding defined by a half-twist is always involutive.

=

Figure 13.6: Definition (defc) of the braiding in terms of the half-twist.

structure arising from it is in fact a symmetry.

Proof. By definition, the twist θ is the identity.

Remark 13.8. The graphical representation of τ as a half-twist is perfectly compatible
with the representations for braiding and twist, as is seen in Figure 13.6.

Remark 13.9 ([Egg11, Remark 4.6]). “Star bar categories” [BM09, Definition 4.5] are
a superficially similar, but different concept than half-twists.

“Self-duality structures” [Sel10] seem closely related to half-twists, although working
out the exact correspondence remains for future work.

Remark 13.10. In [Enr10], “half-balanced” categories are introduced, which – in the
present language – amount to natural isomorphisms a : 1C =⇒ ( ) in a balanced
monoidal category with strict involution, satisfying (defc), but not necessarily (T r)

or (T l).
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It remains to be seen whether important counterexamples arise that are “half-
balanced” without a−1 being a half-twist. Furthermore, any graphical intuition seems
to be missing or obscured in the cited article.

For the next definition and lemma, recall that a monoidal functor F has coherence
morphisms F 2

X,Y : FX ⊗FY → F (X ⊗Y ) and F 0 : ID → FIC, and an involutive mo-
noidal functor has an additional coherence morphism FX : FX → FX, as described
in Definition 12.16.

Definition 13.11. Let F : C → D be an involutive monoidal functor, τ a half-twist
on C and, by overloading of the same symbol, τ a half-twist on D. F is said to be
half-twist preserving if the following diagram commutes:

FX FX

FX FX

τFX

FX

FτX
(axFτ )

Lemma 13.12. Let F : C → D be involutive monoidal and half-twist preserving.
Then F is a balanced (i.e. it preserves braiding and twist) functor for the balanced
structures coming from the half-twists.

Proof. The proof for preservation of the braiding is presented in the following
commutative diagram, while the proof for preservation of the twist is left as an
exercise.

FX ⊗ FY FX ⊗ FY F (X ⊗ Y )

FX ⊗ FY FX ⊗ FY F
(
X ⊗ Y

)

FY ⊗ FX F (Y ⊗X) F
(
Y ⊗X

)

FY ⊗ FX F (Y ⊗X) F (Y ⊗X)

cFX,FY (defc)

(axFτ )⊗ (axFτ )

F 2
X,Y

(natF 2)

FcX,Y

τFX⊗τFY

χFX,FY

FX⊗FY

FτX⊗FτY

F 2
X,Y

(axFχ)

F (τX⊗τY )

FχX,Y F (defc)

τFY⊗FX

F 2
Y,X

(natτ )

FY⊗X

τF (Y⊗X)
FτY⊗X

F 2
Y,X

(axFτ )
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Axiom (axFχ) from page 85 plays a key role.

13.2 Half-ribbon categories

A ribbon category is a category with duals and a balanced structure, and an axiom
which the twist must satisfy. The pressing question is therefore: In the presence
of duals, what axioms must a half-twist satisfy in order for the resulting twist to
be ribbon? A category satisfying the correct axiom would be called a half-ribbon
category.

We have seen now that a half-twist gives rise to a balanced structure. It is well-
known (Theorem 2.1) that in a rigid, braided category, twists and pivotal structures
are in (noncanonical) correspondence. It will turn out to be more convenient to
consider the pivotal structure defined by the balanced structure to understand
half-ribbon categories.

Lemma 13.13. Assume an involutive monoidal category with half-twist that is also
rigid, i.e. has right and left duals. The pivotal structure from Theorem 2.1, with
respect to the balanced structure from the half-twist, has the following form:

X
(1X⊗χ̊)◦ρ−1

X−−−−−−−→ X ⊗ I 1X⊗coevX∗−−−−−−−→ X ⊗X∗∗ ⊗X∗

1X⊗χ−1
X∗,X∗∗−−−−−−−→ X ⊗X∗ ⊗X∗∗

1X⊗τX∗⊗1
X∗∗−−−−−−−−−→ X ⊗X∗ ⊗X∗∗

evX ⊗1
X∗∗−−−−−−→ I ⊗X∗∗

λ
X∗∗−−−→ X∗∗

εX∗∗◦τ−1

X∗∗−−−−−−→ X∗∗ (13.2.1)

Note that it only contains half-twists on single strands.

Proof. See Figure 13.7, which contains a diagrammatic proof. The left hand side is
derived from solving (2.1.22) for the pivotal structure. We first insert the definition
of the braiding in terms of a half-twist of two strands. We apply naturality of τ to
the evaluations and coevaluations. The key step now consists of using the axiom
(T r) to join three half-twists of two strands to a single half-twist of three strands
and three individual half-twists (of which the outer ones cancel). The half-twist of
three strands is then cancelled with the lower of the top two half-twists, yielding the
result on the right hand side, which equals (13.2.1) after close inspection.

Note that we have not used arbitrary three-dimensional isotopies, but only those
moves justified by their algebraic counterparts from the earlier sections.
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X

(defc)
=

X

(natτ )
=

X

(T r)
=

X

(natτ )
=

X

(The green rectangles mark the area where the diagram will be manipulated next.)

Figure 13.7: A pivotal structure arising from a half-twist. (Other similar constructions
exist and give rise to potentially different pivotal structures.)

Definition 13.14. A half-ribbon category is a rigid involutive monoidal category
with half-twist that is involutive pivotal, with respect to the pivotal structure from
Lemma 13.13.

The graphical representation for the pivotality condition is found in Figure 13.8a.

Remark 13.15. It is worth expanding this definition. Given a pivotal category C with
pivotal structure i, its reverse Crev has a canonical pivotal structure which is the
inverse of i (Definition 12.46). If C is involutive pivotal, the involution functor ( ) is
required to preserve the pivotal structure (Definition 12.50). In a rigid category, a
half-twist noncanonically determines a pivotal structure, we pick the one from Lemma
13.13 for graphical reasons. If we choose the same half-twist on Crev, the involution
functor preserves it (Lemma 13.3). The half-twist on Crev defines a pivotal structure
again by Lemma 13.13, onto which i is mapped by the involution functor. However,
the choice is noncanonical, and usually it is not equal to the pivotal structure arising
from the reversal of the monoidal product. In a half-ribbon category, however, all of
the different choices are required to coincide.

Lemma 13.16. A rigid involutive monoidal category with half-twist is a half-ribbon
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X

(piv)
=

X

(a) The involution functor is required to be pivotal, (piv) from page 94. On the
left hand side, we see the inverse ιX of the pivotal structure. It is equated to iX ,
which is the result from Figure 13.7 rotated by π.

X

(piv)◦(nat)τ
=

X

⇐⇒

X X∗

=

X X∗

(b) Applying naturality of the half-twist to the right hand side of Figure 13.8a
yields the first equation. Due to the snake identities (2.1.3), the coevaluation can
be removed, yielding the second, more concise equation on the right. For both
equations, the two sides resemble each other closely, but note the subtle difference
in the turn directions of the half-twist.

Figure 13.8: In a half-ribbon category, the involutive structure is required to be
pivotal.

category iff the half-twist satisfies the following equation for every object X:

εX∗

τ−1
X∗

τX

evX

X∗X

=

εX

τ−1

X

τX∗

evX

X X∗

(13.2.2)

Proof. The proof is shown graphically in Figure 13.8b. First, naturality of the left
half-twist in the right hand side of Figure 13.8a is applied to yield the diagrammatic
equation on the left.
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Now, the coevaluations can be removed in both sides of the resulting equation,
because of the snake identities (2.1.3). This yields the claim.

A ribbon category is a balanced, rigid category with an axiom relating the balance
to the duals. Since twists in a braided, rigid category are in bijective correspondence
with pivotal structures (Theorem 2.1), we can as well read the ribbon axiom as an
axiom on the pivotal structure. The half-ribbon axiom has of course been chosen
such that it implies the ribbon axiom:

Proposition 13.17. In a half-ribbon category, the twist satisfies the ribbon equation
(2.1.23).

Proof. We will again proceed graphically:

θ∗X =

X∗

=

X∗

(13.2.2)
=

X∗

=

X∗

=

X∗

= θX∗

First, we introduce a cancelling half-twist pair on the definition of the dual twist.
We can now use Lemma 13.16, which follows from pivotality. The remaining steps
consist of cancelling a further half-twist pair and invoking the snake identity to arrive
at the twist of the dual.

13.3 Half-twists in †-categories

When moving from ordinary categories to †-categories, one usually requires all
coherence morphisms, as well all structural morphisms, to be unitary, although for
separate reasons.

Coherence morphisms only deserve their name if any two compositions of coherences
between two fixed objects coincide. Coherences are then required to be unitary in
order to prevent the †-structure from introducing new morphisms.

Structural morphisms like braidings and twists are often required to be unitary in
order to validate laws which are true in the graphical calculus (or which are desirable
for other reasons). Half-twists will be no exception here.
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
X


†

=

X

Figure 13.9: Demanding the half-twist to be unitary validates an obvious graphical
law: The horizontal reflection of a half-twist is its inverse.

Definition 13.18. An involutive monoidal †-category is an involutive monoidal
category that is also a †-category, such that the coherence isomorphisms ε and χ are
unitary.

Definition 13.19. A half-twist in an involutive monoidal †-category is always
required to be unitary. The graphical representation of this law is Figure 13.9.

Remark 13.20. The graphical calculus of †-categories is compatible with the graphical
calculus of half-twists, i.e. the reflection of a half-twist at the horizontal plane is its
inverse.
Unsurprisingly, the braiding and twist defined by a unitary half-twist are again

unitary.

13.4 Examples

We give an informal account of the category HRIB defined in [ST09], which realises
the graphical calculus of half-twists.

Definition 13.21 ([ST09, Definition 4.5]). For a set S, the half-ribbon category
HRIB(S) is defined as follows.

Objects Sets of finitely many closed intervals on the real line, each equipped with
a direction (up or down), an element of S as label, and an orientation of the
thickening of the interval. We encode the orientation as a shading: Light for
the orientation agreeing with a standard orientation of the thickening of the
real line, and dark for the opposite orientation.

Morphisms Isotopy equivalence classes of tangles of oriented, directed, S-labelled
ribbons embedded in R2 × [0, 1]. The first component is the horizontal axis in
the plane of drawing, the second component is the horizontal axis perpendicular
to it. The third component is thought of as a height, and will also be the
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direction of composition. The ribbons may be closed annuli, or diffeomorphic
to [0, 1]× [0, 1]. In the latter case, the ends of the ribbons are required to end
on R×{0}×{0, 1}. Source and target are given by projection of the ends onto
0 and 1 in the third component of the embedding, respectively. Composition is
given by identifying the tangles along the common real line and rescaling. The
identity morphism to a given object is its product with the interval.

Monoidal structure The monoidal product is given by horizontal juxtaposition of
intervals and tangles. The monoidal unit is the empty set.

Involutive structure The involution functor rotates a tangle and the intervals by
π around the vertical axis (and therefore interchanges light and dark shadings).
The coherence isomorphisms χ and ε are then mere witnesses of the geometrical
facts that a rotation by π reverses the order of objects and a rotation 2π is
equal no rotation.

Half-twist One or several ribbons turning by π.

†-structure Reflection on the horizontal plane, or equivalently postcomposition of
each ribbon parametrisation with the map (x, y, z) 7→ (x, y, 1− z).

Remark 13.22. This definition is slightly amended with respect to [ST09, Definition
4.5]. Here, we don’t deem it necessary to consider objects up to isotopy. (Instead,
isotopic objects are isomorphic via ribbons implementing the isotopy.) We also
detail the involutive monoidal structure and the half-twist – a concept which was
not available then to Snyder and Tingley – and the †-structure.

Example 13.23. Let HilbR,f.d. be the symmetric monoidal category of finite dimen-
sional real inner product vector spaces. It has a natural involutive monoidal structure
with half-twist:

HilbR,f.d. is a pivotal †-category, and the involution structure is given by the
covariant dual functor, as in Lemma 12.36. The †-structure for f : V → W arises
from the inner product via

〈
f †v, w

〉
W

= 〈v, fw〉V ∀v ∈ V,w ∈ W . A dualising
counit for the inner product can always be found since the vector spaces are finite
dimensional.

For a given vector space V with inner product 〈−,−〉V : V ⊗V → R, the half-twist
τV : V ∗ → V is given by τ−1

V (v) := 〈v,−〉V .
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With suitable definitions of tensor product and dual inner product space, this
half-twist is involutive (Definition 13.6), and HilbR,f.d. becomes a half-ribbon category
giving rise to the original symmetric monoidal structure.

Counterexample 13.24. Consider the involutive monoidal category VectC (Example
12.11), where involution is complex conjugation. There exists no half-twist for this
balanced involutive structure.

Proof. Assume τ is a half-twist for VectC giving rise to the standard symmetric
braiding and the trivial twist. Note that then we have τ ◦ τ = ε, and χ̊ satisfies
χ̊−1 ◦ χ̊−1 = εI [Egg11, (N0) from Lemma 2.3]. We can therefore infer τI = ±χ̊−1.
The positive sign will be assume for now, but the proof for the negative sign choice
is analogous.
Let now V be a complex vector space and v ∈ V . Then λ 7→ λv is a linear map

C→ V . Its naturality square for τ is then:

C C

V V

χ̊

λ7→λv λ 7→λv

τ−1
V

It implies that the maps λ 7→ τ−1
V (λv) = λτ−1

V (v) and λ 7→ χ̊(λ)v = λv coincide.
In particular, they must coincide for λ = 1, which implies τ−1

V (v) = v for each
v ∈ V . But this is not a linear map since V is equipped with the conjugate scalar
multiplication, a contradiction.

This counterexample was found by Egger (private conversation) and the author
independently.

13.5 Strictification of the half-twist

I thank the participants of the mathematical physics seminar in Vienna, in partic-
ular Gregor Schaumann, for an inspiring discussion after which I could write this
subsection.

Lemma 13.25. Let C be a balanced category. Choose the braiding c and the twist
θ as the involutive coherences, as in Example 12.15. Then 11C is a half-twist for it.
It gives rise to the original balanced structure c and θ.
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Proof. Since τX = 1X , the axiom (T r) simplifies considerably. The remaining
condition on χ = c is easily proved via naturality of c and a braid axiom. It is easy
to check that in this case, the same braiding and twist arise as before.

Definition 13.26. Let (C,− ⊗ −, I, ( ), χ, ε) be an involutive monoidal category
with half-twist τ . Denote the resulting braiding and twist by c and θ, respectively.

The involutive monoidal category Ct is defined as (C,−⊗−, I, 1C, c, θ), equipped
with the trivial half-twist 11C . Note that the involutive structure consists of c and θ,
as in Example 12.15 and the previous lemma.

The half-twist is then said to be strictified.

Proposition 13.27. Let C be an involutive monoidal category with half-twist. There
is a half-twist preserving involutive monoidal equivalence between C and Ct.

Proof. We adopt the notation from the definition of Ct and directly construct two
inverse involutive monoidal functors F : C � Ct : G. The underlying monoidal
functors are each the identity functor. As involutive coherence morphism F , we
choose FX = τX . Recalling that the mere functor F and the monoidal coherence F 2

are trivial, we reduce (axFχ) and (axFε) from page 85 to the definition of c and θ,
respectively. The coherence G is τ−1, which makes G the (strict) inverse of F .

Remark 13.28. After discovering that half-twists lead to balanced structures, it is
a natural question to ask which balanced structures come from half-twists. The
previous proposition shows that, in a sense, all do. But the argument required the
choice of an unnatural involutive structure. Furthermore, we saw in Example 13.24
that certain involutive monoidal structures do not admit half-twists at all, which
suggests that the involutive structure is part of the data on which the existence
question of a half-twist should depend.
We should thus ask: “Given a balanced involutive monoidal category, is there a

half-twist for the involutive structure that reproduces the given balanced structure?”
In all generality, this question is open. Possibly, an obstruction theory can be
developed.

13.6 Half-twisted categories

This subsection tries to give a maximal answer to the question whether a given
balanced involutive monoidal categories admits a half-twist. The key idea is simply
to select all objects that are isomorphic to their conjugate, together with a choice
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of isomorphism that squares to the twist. These objects are then shown to form a
category. Its remaining structure is constructed with the aim to model the original
balanced involutive structure as closely as possible.

Definition 13.29. Let C be a balanced involutive monoidal category. The half-
twisted category C 1

2
consists of:

Objects Tuples
(
X, ζ : X

∼=−→ X
)
satisfying:

ζ ◦ ζ = θX ◦ εX (axζ2)

Morphisms A morphism f : (X1, ζ1)→ (X2, ζ2) is a morphism f : X1 → X2 com-
muting with ζ1 and ζ2 in the following way:

X1 X2

X1 X2

f

ζ1 ζ2

f
(axfζ)

Monoidal unit It is defined as (I, χ̊−1), with χ̊ from (defχ̊).

Monoidal product Define (X1, ζ1)⊗ (X2, ζ2) := (X1 ⊗X2, ζ12), such that:

X2 ⊗X1 X2 ⊗X1

X1 ⊗X2 X1 ⊗X2

ζ2⊗ζ1

χX2,X1 cX2,X1

ζ12
(defζ12)

Involution functor On objects, we define straightforwardly:

(X, ζ) :=
(
X, ζ

)
(defζ)

On morphisms, the involution functor is as before.

Involution coherences χ(X1,ζ1),(X2,ζ2) := χX1,X2 and ε(X,ζ) := εX are again coher-
ence morphisms for the new involutive structure.
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Half-twist We can finally define the half-twist as τ(X,ζ) := ζ.

Lemma 13.30. The previous definition constitutes an involutive monoidal category
with half-twist.

Proof. Monoidal product ζ12 satisfies (axζ2):

X1 ⊗X2 X1 ⊗X2

X2 ⊗X1 X2 ⊗X1

X1 ⊗X2 X1 ⊗X2 X2 ⊗X1

X1 ⊗X2 X2 ⊗X1

X1 ⊗X2 X1 ⊗X2

ζ12

(defζ12)

εX1⊗X2 (N2) ζ12(defζ12)

χX2,X1

ζX2
⊗ζX1

(natχ)

cX2,X1

ζX1
⊗ζX2

χX1,X2

εX1
⊗εX2

cX1,X2

χX1,X2
(axc)

ζ1⊗ζ2 (natc)

χX2,X1

ζ2⊗ζ1
cX1,X2

cX2,X1θX1
⊗θX2

θX1⊗X2

(axcθ)

(axζ2)⊗ (axζ2)

We relied on (axcθ) from page 77.

Involution functor The definition of the involution on objects satisfies (axζ2):

X X

X X

ζ

εX εX(A)
(axζ2)

ζ

θX

(axθ)

θX

The involution on morphisms satisfies (axfζ) by applying ( ) to (axfζ) itself
and inserting the definition of ( ) on objects.
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Involution coherences χ and ε are morphisms in C 1
2
. First, note this lemma:

X ⊗ Y Y ⊗X

X ⊗ Y

Y ⊗X Y ⊗X

cX,Y

χX,Y

τX⊗τY

τY⊗X

cX,Y

(defζ12)

(natc)
τY ⊗τX

(13.6.1)

Using the lemma, it can be shown that χ satisfies (axfζ):

X ⊗ Y X ⊗ Y Y ⊗X

Y ⊗X

X ⊗ Y Y ⊗X Y ⊗X

X ⊗ Y Y ⊗X

τX⊗Y (13.6.1)

cX,Y

(13.6.1)

χX,Y

τY⊗XτY⊗X (defζ)

χY ,X

c
Y ,X (axc)

τX⊗τY

τX⊗τY

χX,Y

(natχ)(defζ)
τY ⊗τX

χX,Y

ε does as well:

X X

X X

εX

(A)
εX

τ
X

(defζ) τX
(natε)

τX

εX

Half-twist τ defined previously is a valid half-twist, that is, it satisfies (T r). In
order to condense the proof to a readable size, it has been strictified, i.e.
X ⊗ Y = Y ⊗X and χ is the identity. (ε does not appear in the proof.) The
heartpiece is the compatibility of the braiding with the monoidal product,
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(axc⊗) (which can be found on page 99).

X ⊗ Y ⊗ Z X ⊗ Y ⊗ Z X ⊗ Y ⊗ Z

X ⊗ Z ⊗ Y X ⊗ Z ⊗ Y

X ⊗ Y ⊗ Z X ⊗ Z ⊗ Y

X ⊗ Y ⊗ Z Z ⊗X ⊗ Y

X ⊗ Y ⊗ Z Y ⊗X ⊗ Z

Z ⊗ Y ⊗X Z ⊗ Y ⊗X Z ⊗ Y ⊗X

τX⊗τY ⊗τZ

(defζ12)
τX⊗τY⊗Z 1

X
⊗τY⊗Z

1X⊗τZ⊗1Y

(defζ12)

τX⊗1Z⊗Y

τX⊗Z⊗1Y

1Y⊗X⊗τZ

1X⊗cY ,Z

(natc)
cX,Z⊗1Y

(axc⊗)

τY⊗X⊗1Z

cX⊗Y ,Z

1X⊗cY ,Z

(natc) 1Z⊗τY⊗X

τZ⊗Y⊗X

τY⊗X⊗τZ

(defζ12) cY⊗X,Z

Remark 13.31. The philosophy behind this construction is very akin to equivarianti-
sation (see e.g. [BN13, Section 2.1] for an introduction) but there are some subtle
differences.
In the equivariantisation of the Z2-action given by ( ) and ε (Remark 12.8),

we would study tuples (X, ζ : X → X) satisfying ζζ = εX , corresponding to the
special case of the half-twisted category with trivial twist (and thus symmetric
braiding). Furthermore, group actions on monoidal categories are usually required
to be monoidal automorphisms, whereas ( ) is an anti-automorphism.

If one is willing to restrict to symmetric categories where the braiding is a coher-
ence, the differences between equivariantisation and the half-twisted category seem
negligible, and one can adopt a definition like the “category of self-conjugates” in
[Jac12, Definition 3.1].

Definition 13.32. There is a canonical forgetful functor U : C 1
2
→ C, which is

involutive monoidal. Its map on objects is U(X, ζ) = X, and its map on morphisms
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is the identity. The monoidal and involutive coherences are all identities.

Lemma 13.33. U is balanced, i.e. the braiding and twist induced by τ maps to the
braiding and twist of C under the forgetful functor U .

Proof. The axiom on the objects (axζ2) mirrors the definition of the twist (defθ) from
a half-twist, see page 99. Therefore, the twist of C 1

2
is τ ◦ τ ◦ ε−1 = θ. Similarly, the

monoidal product (defζ12) has been defined exactly like (defc), such that it leads to
the braiding c.

Definition 13.34. Let C be a ribbon category with chosen duals that is also pivotal
involutive. We define again the half-twisted category C 1

2
as in Definition 13.29. We

pull back the pivotal structure along the forgetful functor, i.e. i(X,ζ) := iX , and
choose the following duals:

(X, ζ)∗ =
(
X∗, (ε∗X)−1ζ

∗
jX

)
(defζ∗)

jX is taken from Definition 12.52.

Lemma 13.35. The half-twisted category C 1
2
is a half-ribbon category.

Proof. First, one has to show that (X, ζ)∗ as defined above is indeed a dual for (X, ζ),
i.e. the evaluation and coevaluation morphisms evX and coevX satisfy (axfζ) and
thus are indeed morphisms in C 1

2
. This follows from inserting Definitions (defζ12)

and (defj) (page 95), and then recognising the definition of the twist in terms of the
pivotal structure and the braiding, (2.1.22).
Second, it has to be shown that C 1

2
is pivotal involutive for the pivotal structure

coming from the half-twist. By assumption, C already is. But since the forgetful
functor U is balanced, and the pivotal structure i is pulled back along it, the axiom
(piv) is satisfied in C 1

2
as well.

14 Outlook

A number of open questions about half-twists remain to be studied.
It has been shown in Section 13.5 that any balanced structure comes from a

half-twist if we can choose the involutive structure freely. However, if the involutive
structure is fixed as well, there are counterexamples (13.24). It should be studied
which balanced involutive categories have half-twists.
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From any monoidal category, we can construct a canonical braided monoidal
category, the Drinfeld centre [Maj00, Corollary 9.1.6]. The question whether from
any involutive monoidal category we can define a canonical category with half-twist
suggests itself. The construction of half-twisted categories from Section 13.6 is a step
in that direction, but it requires a balanced involutive monoidal category.

Braided monoidal categories have algebraic counterparts in the form of quasitrian-
gular Hopf algebras. For deformed universal enveloping algebras of complex simple
Lie algebras, the algebraic formulation of half-twists exists [ST09] and has in parts
founded the field. A generalisation applicable to arbitrary Hopf algebras is under
preparation by the author and will be published separately.
The precise relation between Egger’s definition of half-twists and Selinger’s self-

duality structures [Sel10] remains to be established.
While plenty of examples for half-ribbon categories have been presented, none

of them are entirely new since the resulting braidings were known already. An
astonishing result would be a category with a new half-twist that leads to a previously
unknown braided monoidal category. But since many examples for braidings are
already known, the chances for such a result seem low.

How can we use half-twists and their graphical calculus? A first thought that might
come to mind would be to evaluate a nonoriented ribbon diagram, like a Möbius
strip, by taking the trace over a half-twist. Unfortunately, this would not typecheck,
since τX : X → X, and we cannot take the trace of this morphism. It seems that a
coherence isomorphism uX : X → X is needed to identify the two sides invisibly. It
can then be composed with τ , and we can take the trace of the composite. u must
be invisible in the graphical calculus, very unlike τ .

Even without the ability of evaluating nonoriented diagrams, the graphical calculus
of half-twists is useful. Let C be a half-ribbon category. Consider for example a
ribbon graph, where vertices are labelled with morphisms in C, and edges are labelled
with objects. Choose an embedding in R2 × R such that the projection on R2

is regular (i.e. no three ribbons project onto the same point and no singularities
occur). We can then evaluate the ribbon graph in the graphical calculus of C. It
seems reasonable to conjecture that the evaluation will be invariant under isotopies.
(Possibly, mild extra assumptions need to be made on C.) The evaluation is then an
invariant of the graph and the embedding.

This is interesting for the study of two-dimensional spin-sensitive state sum models
[BT15]. Such a model can be defined by immersing a triangulated surface into R3
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and labelling the ribbon graph corresponding to the triangulation with data from a
special symmetric Frobenius algebra in VectC. Its evaluation takes the form of a state
sum model, and is an invariant of the surface and its spin structure, which is defined
as the pull-back of the canonical spin structure of R3, along the immersion. When a
full-flegded graphical calculus of half-twists is available, we can consider Frobenius
algebras internal to an arbitrary half-ribbon category and consider the invariant
assigned to it. Such models are interesting from the viewpoint of mathematical
physics, especially when studying defects on them, which also seems feasible in
half-ribbon categories.
The author became interested in half-twists as a tool to study Noncommutative

Geometry (NcG). Two-dimensional spin state sum models are, surprisingly, related
to NcG ([FRS02, Section 6] and work by John Barrett, in preparation). The central
objects of study are a ?-algebra (an involutive monoid in Vect), a Hilbert space with
a real structure (an involutive object in Hilb) and certain operators acting on the
Hilbert space. More strikingly, a graphical calculus has been developed recently
for finite-dimensional NcG, and it involves half-twists. The author is confident
that (finite dimensional) spectral triples internal to a half-ribbon category can be
defined, such that original definition can be recovered as a special case. Nontrivial
examples can then be introduced, such as Noncommutative Geometries with quantum
symmetry groups.

What purposes do half-twists have for other areas of mathematics?
Braided monoidal categories are special cases of tricategories with one 1-morphism

[CG07]. It seems possible that half-twists occur as higher-categorical structures as
well. A comparison with the well-developed graphical calculus of Gray categories
[BMS12] should shed light on this question.
The braid group acts on endomorphism sets in braided monoidal categories. It

remains for future work to define a half-twist group or groupoid that generalises the
braid group and acts on objects in a category with half-twist. Its relation to the
braid group needs to be studied closely, since it could possibly lead to new insights
on the field of braid group representations.
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