
Setup Quick introduction to Rhine Let’s hack! After the tutorial

Rhine - FRP with type level clocks
A tea tutorial

Manuel Bärenz

15. Januar 2020

Setup Quick introduction to Rhine Let’s hack! After the tutorial

cabal update
git clone https://github.com/turion/rhine-tutorial/
cd rhine-tutorial
cabal sandbox init
cabal install --only-dependencies
cabal configure
cabal build
cabal run rhine-tutorial

Read documentation on http://hackage.haskell.org/package/rhine
(version 0.1.0.0)!

http://hackage.haskell.org/package/rhine

Setup Quick introduction to Rhine Let’s hack! After the tutorial

Synchronous arrowized FRP

Dunai (Iván Pérez, Henrik Nilsson, MB)
data MSF m a b = MSF (a -> m (b, MSF m a b))

-- Control.Arrow
(>>>) :: MSF m a b -> MSF m b c -> MSF m a c
(***) :: MSF m a b -> MSF m c d -> MSF m (a,c) (b,d)
arr :: (a -> b) -> MSF m a b

-- only dunai
arrM :: (a -> m b) -> MSF m a b

MSF (Reader Double) is a replacement for FRP.Yampa.SF.
Other monads allow for concise FRP paradigms:

State, Reader and Writer give global state variables.
List gives branching computations.
Either gives control flow!

Support for (entering and leaving) monad transformers.

Setup Quick introduction to Rhine Let’s hack! After the tutorial

Synchronous arrowized FRP

Dunai (Iván Pérez, Henrik Nilsson, MB)
data MSF m a b = MSF (a -> m (b, MSF m a b))

-- Control.Arrow
(>>>) :: MSF m a b -> MSF m b c -> MSF m a c
(***) :: MSF m a b -> MSF m c d -> MSF m (a,c) (b,d)
arr :: (a -> b) -> MSF m a b

-- only dunai
arrM :: (a -> m b) -> MSF m a b

MSF (Reader Double) is a replacement for FRP.Yampa.SF.
Other monads allow for concise FRP paradigms:

State, Reader and Writer give global state variables.
List gives branching computations.
Either gives control flow!

Support for (entering and leaving) monad transformers.

Setup Quick introduction to Rhine Let’s hack! After the tutorial

Synchronous arrowized FRP

Dunai (Iván Pérez, Henrik Nilsson, MB)
data MSF m a b = MSF (a -> m (b, MSF m a b))

-- Control.Arrow
(>>>) :: MSF m a b -> MSF m b c -> MSF m a c
(***) :: MSF m a b -> MSF m c d -> MSF m (a,c) (b,d)
arr :: (a -> b) -> MSF m a b

-- only dunai
arrM :: (a -> m b) -> MSF m a b

MSF (Reader Double) is a replacement for FRP.Yampa.SF.
Other monads allow for concise FRP paradigms:

State, Reader and Writer give global state variables.
List gives branching computations.
Either gives control flow!

Support for (entering and leaving) monad transformers.

Setup Quick introduction to Rhine Let’s hack! After the tutorial

Synchronous arrowized FRP

Dunai (Iván Pérez, Henrik Nilsson, MB)
data MSF m a b = MSF (a -> m (b, MSF m a b))

-- Control.Arrow
(>>>) :: MSF m a b -> MSF m b c -> MSF m a c
(***) :: MSF m a b -> MSF m c d -> MSF m (a,c) (b,d)
arr :: (a -> b) -> MSF m a b

-- only dunai
arrM :: (a -> m b) -> MSF m a b

MSF (Reader Double) is a replacement for FRP.Yampa.SF.

Other monads allow for concise FRP paradigms:

State, Reader and Writer give global state variables.
List gives branching computations.
Either gives control flow!

Support for (entering and leaving) monad transformers.

Setup Quick introduction to Rhine Let’s hack! After the tutorial

Synchronous arrowized FRP

Dunai (Iván Pérez, Henrik Nilsson, MB)
data MSF m a b = MSF (a -> m (b, MSF m a b))

-- Control.Arrow
(>>>) :: MSF m a b -> MSF m b c -> MSF m a c
(***) :: MSF m a b -> MSF m c d -> MSF m (a,c) (b,d)
arr :: (a -> b) -> MSF m a b

-- only dunai
arrM :: (a -> m b) -> MSF m a b

MSF (Reader Double) is a replacement for FRP.Yampa.SF.
Other monads allow for concise FRP paradigms:

State, Reader and Writer give global state variables.
List gives branching computations.
Either gives control flow!

Support for (entering and leaving) monad transformers.

Setup Quick introduction to Rhine Let’s hack! After the tutorial

Synchronous arrowized FRP

Dunai (Iván Pérez, Henrik Nilsson, MB)
data MSF m a b = MSF (a -> m (b, MSF m a b))

-- Control.Arrow
(>>>) :: MSF m a b -> MSF m b c -> MSF m a c
(***) :: MSF m a b -> MSF m c d -> MSF m (a,c) (b,d)
arr :: (a -> b) -> MSF m a b

-- only dunai
arrM :: (a -> m b) -> MSF m a b

MSF (Reader Double) is a replacement for FRP.Yampa.SF.
Other monads allow for concise FRP paradigms:

State, Reader and Writer give global state variables.

List gives branching computations.
Either gives control flow!

Support for (entering and leaving) monad transformers.

Setup Quick introduction to Rhine Let’s hack! After the tutorial

Synchronous arrowized FRP

Dunai (Iván Pérez, Henrik Nilsson, MB)
data MSF m a b = MSF (a -> m (b, MSF m a b))

-- Control.Arrow
(>>>) :: MSF m a b -> MSF m b c -> MSF m a c
(***) :: MSF m a b -> MSF m c d -> MSF m (a,c) (b,d)
arr :: (a -> b) -> MSF m a b

-- only dunai
arrM :: (a -> m b) -> MSF m a b

MSF (Reader Double) is a replacement for FRP.Yampa.SF.
Other monads allow for concise FRP paradigms:

State, Reader and Writer give global state variables.
List gives branching computations.

Either gives control flow!
Support for (entering and leaving) monad transformers.

Setup Quick introduction to Rhine Let’s hack! After the tutorial

Synchronous arrowized FRP

Dunai (Iván Pérez, Henrik Nilsson, MB)
data MSF m a b = MSF (a -> m (b, MSF m a b))

-- Control.Arrow
(>>>) :: MSF m a b -> MSF m b c -> MSF m a c
(***) :: MSF m a b -> MSF m c d -> MSF m (a,c) (b,d)
arr :: (a -> b) -> MSF m a b

-- only dunai
arrM :: (a -> m b) -> MSF m a b

MSF (Reader Double) is a replacement for FRP.Yampa.SF.
Other monads allow for concise FRP paradigms:

State, Reader and Writer give global state variables.
List gives branching computations.
Either gives control flow!

Support for (entering and leaving) monad transformers.

Setup Quick introduction to Rhine Let’s hack! After the tutorial

Synchronous arrowized FRP

Dunai (Iván Pérez, Henrik Nilsson, MB)
data MSF m a b = MSF (a -> m (b, MSF m a b))

-- Control.Arrow
(>>>) :: MSF m a b -> MSF m b c -> MSF m a c
(***) :: MSF m a b -> MSF m c d -> MSF m (a,c) (b,d)
arr :: (a -> b) -> MSF m a b

-- only dunai
arrM :: (a -> m b) -> MSF m a b

MSF (Reader Double) is a replacement for FRP.Yampa.SF.
Other monads allow for concise FRP paradigms:

State, Reader and Writer give global state variables.
List gives branching computations.
Either gives control flow!

Support for (entering and leaving) monad transformers.

Setup Quick introduction to Rhine Let’s hack! After the tutorial

Synchronous arrowized FRP

Arrow syntax
{-# LANGUAGE Arrows #-}

verboseSum :: MSF IO Int Int
verboseSum = proc n -> do

s <- sumS -< n
_ <- arrM print -< "The sum is now " ++ show s
returnA -< s

Setup Quick introduction to Rhine Let’s hack! After the tutorial

Clocks

Clock type All relevant properties of the clock, such as ...

When, and how often, the clock should tick
Which monad the clock takes side effects in
What additional data (besides a time stamp) the
clock outputs

Clock value All information needed to run the clock

E.g. physical device address, event socket
Implementation choice

Running clock Side-effectful stream of time stamps, tagged with
additional info about the tick.

Setup Quick introduction to Rhine Let’s hack! After the tutorial

Clocks

Clock type All relevant properties of the clock, such as ...
When, and how often, the clock should tick

Which monad the clock takes side effects in
What additional data (besides a time stamp) the
clock outputs

Clock value All information needed to run the clock

E.g. physical device address, event socket
Implementation choice

Running clock Side-effectful stream of time stamps, tagged with
additional info about the tick.

Setup Quick introduction to Rhine Let’s hack! After the tutorial

Clocks

Clock type All relevant properties of the clock, such as ...
When, and how often, the clock should tick
Which monad the clock takes side effects in

What additional data (besides a time stamp) the
clock outputs

Clock value All information needed to run the clock

E.g. physical device address, event socket
Implementation choice

Running clock Side-effectful stream of time stamps, tagged with
additional info about the tick.

Setup Quick introduction to Rhine Let’s hack! After the tutorial

Clocks

Clock type All relevant properties of the clock, such as ...
When, and how often, the clock should tick
Which monad the clock takes side effects in
What additional data (besides a time stamp) the
clock outputs

Clock value All information needed to run the clock

E.g. physical device address, event socket
Implementation choice

Running clock Side-effectful stream of time stamps, tagged with
additional info about the tick.

Setup Quick introduction to Rhine Let’s hack! After the tutorial

Clocks

Clock type All relevant properties of the clock, such as ...
When, and how often, the clock should tick
Which monad the clock takes side effects in
What additional data (besides a time stamp) the
clock outputs

Clock value All information needed to run the clock

E.g. physical device address, event socket
Implementation choice

Running clock Side-effectful stream of time stamps, tagged with
additional info about the tick.

Setup Quick introduction to Rhine Let’s hack! After the tutorial

Clocks

Clock type All relevant properties of the clock, such as ...
When, and how often, the clock should tick
Which monad the clock takes side effects in
What additional data (besides a time stamp) the
clock outputs

Clock value All information needed to run the clock
E.g. physical device address, event socket

Implementation choice
Running clock Side-effectful stream of time stamps, tagged with

additional info about the tick.

Setup Quick introduction to Rhine Let’s hack! After the tutorial

Clocks

Clock type All relevant properties of the clock, such as ...
When, and how often, the clock should tick
Which monad the clock takes side effects in
What additional data (besides a time stamp) the
clock outputs

Clock value All information needed to run the clock
E.g. physical device address, event socket
Implementation choice

Running clock Side-effectful stream of time stamps, tagged with
additional info about the tick.

Setup Quick introduction to Rhine Let’s hack! After the tutorial

Clocks

Clock type All relevant properties of the clock, such as ...
When, and how often, the clock should tick
Which monad the clock takes side effects in
What additional data (besides a time stamp) the
clock outputs

Clock value All information needed to run the clock
E.g. physical device address, event socket
Implementation choice

Running clock Side-effectful stream of time stamps, tagged with
additional info about the tick.

Setup Quick introduction to Rhine Let’s hack! After the tutorial

Clocks

Rhine
-- simplified here
class Clock m cl where

type Time cl -- time stamp
type Tag cl -- additional information about tick
initClock :: cl -> MSF m () (TimeInfo cl, Tag cl)

data TimeInfo cl = {...}
-- absolute and relative time, tag

Setup Quick introduction to Rhine Let’s hack! After the tutorial

Clocks

Rhine
-- simplified here
class Clock m cl where

type Time cl -- time stamp
type Tag cl -- additional information about tick
initClock :: cl -> MSF m () (TimeInfo cl, Tag cl)

data TimeInfo cl = {...}
-- absolute and relative time, tag

Setup Quick introduction to Rhine Let’s hack! After the tutorial

Clocks

A clock produces side effects to...
... wait between ticks,
... measure the current time,
... produce additional data (e.g. events).

Examples of clocks
Fixed sample rate (e.g. Millisecond n)
Events (e.g. Stdin)

Setup Quick introduction to Rhine Let’s hack! After the tutorial

Clocks

A clock produces side effects to...
... wait between ticks,
... measure the current time,
... produce additional data (e.g. events).

Examples of clocks
Fixed sample rate (e.g. Millisecond n)
Events (e.g. Stdin)

Setup Quick introduction to Rhine Let’s hack! After the tutorial

Clocks

type ClSF m cl a b = MSF (ReaderT (TimeInfo cl) m) a b

Lifting dunai concepts
arrMCl :: (a -> m b) -> SyncSF m cl a b
...

Time information
timeInfo :: ClSF m cl () (TimeInfo cl)

Basic signal processing
integral :: VectorSpace v => ClSF m cl v v
...

Setup Quick introduction to Rhine Let’s hack! After the tutorial

Clocks

type ClSF m cl a b = MSF (ReaderT (TimeInfo cl) m) a b

Lifting dunai concepts
arrMCl :: (a -> m b) -> SyncSF m cl a b
...

Time information
timeInfo :: ClSF m cl () (TimeInfo cl)

Basic signal processing
integral :: VectorSpace v => ClSF m cl v v
...

Setup Quick introduction to Rhine Let’s hack! After the tutorial

Clocks

type ClSF m cl a b = MSF (ReaderT (TimeInfo cl) m) a b

Lifting dunai concepts
arrMCl :: (a -> m b) -> SyncSF m cl a b
...

Time information
timeInfo :: ClSF m cl () (TimeInfo cl)

Basic signal processing
integral :: VectorSpace v => ClSF m cl v v
...

Setup Quick introduction to Rhine Let’s hack! After the tutorial

Clocks

type ClSF m cl a b = MSF (ReaderT (TimeInfo cl) m) a b

Lifting dunai concepts
arrMCl :: (a -> m b) -> SyncSF m cl a b
...

Time information
timeInfo :: ClSF m cl () (TimeInfo cl)

Basic signal processing
integral :: VectorSpace v => ClSF m cl v v
...

Setup Quick introduction to Rhine Let’s hack! After the tutorial

Exceptions and control flow

ExceptT...
data Either e a = Left e | Right a
newtype ExceptT e m a = ExceptT (m (Either e a))

...control flow! (Thanks to Paolo Capriotti)
-- dunai, rhine (simplified)
newtype ClSFExcept m cl a b e

= ClSFExcept (SyncSF (ExceptT e m) cl a b)

instance Monad m => Monad (ClSFExcept m cl a b)

throwOn' :: ClSF (ExceptT e m) cl (Bool, e) ()
try :: ClSF (ExceptT e m) cl a b

-> ClSFExcept m cl a b e
safely :: ClSFExcept m cl a b Empty -> SyncSF m cl a b
safe :: ClSF m cl a b -> SyncExcept m cl a b e

Setup Quick introduction to Rhine Let’s hack! After the tutorial

Exceptions and control flow

ExceptT...
data Either e a = Left e | Right a
newtype ExceptT e m a = ExceptT (m (Either e a))

...control flow! (Thanks to Paolo Capriotti)
-- dunai, rhine (simplified)
newtype ClSFExcept m cl a b e

= ClSFExcept (SyncSF (ExceptT e m) cl a b)

instance Monad m => Monad (ClSFExcept m cl a b)

throwOn' :: ClSF (ExceptT e m) cl (Bool, e) ()
try :: ClSF (ExceptT e m) cl a b

-> ClSFExcept m cl a b e
safely :: ClSFExcept m cl a b Empty -> SyncSF m cl a b
safe :: ClSF m cl a b -> SyncExcept m cl a b e

Setup Quick introduction to Rhine Let’s hack! After the tutorial

Exceptions and control flow

ExceptT...
data Either e a = Left e | Right a
newtype ExceptT e m a = ExceptT (m (Either e a))

...control flow! (Thanks to Paolo Capriotti)
-- dunai, rhine (simplified)
newtype ClSFExcept m cl a b e

= ClSFExcept (SyncSF (ExceptT e m) cl a b)

instance Monad m => Monad (ClSFExcept m cl a b)

throwOn' :: ClSF (ExceptT e m) cl (Bool, e) ()
try :: ClSF (ExceptT e m) cl a b

-> ClSFExcept m cl a b e
safely :: ClSFExcept m cl a b Empty -> SyncSF m cl a b
safe :: ClSF m cl a b -> SyncExcept m cl a b e

Setup Quick introduction to Rhine Let’s hack! After the tutorial

Exceptions and control flow

Hello World!
type SumClock = Millisecond 100

fillUp :: ClSF (ExceptT Double m) SumClock Double ()
fillUp = proc x -> do

s <- integral -< x
_ <- throwOn' -< (s > 5, s)
returnA -< ()

helloWorld :: ClSFExcept IO SumClock () () Empty
helloWorld = do

try $ arr (const 1) >>> fillUp
once_ $ putStrLn "Hello World!"
helloWorld

main = flow $ safely helloWorld @@ waitClock

Setup Quick introduction to Rhine Let’s hack! After the tutorial

Exceptions and control flow

Clock safety
fastSignal :: ClSF m FastClock () a

slowProcessor :: ClSF m SlowClock a b

clockTypeError = fastSignal >>> slowProcessor

PresentationExamples.hs:67:33: error:
• Couldn't match type ‘SlowClock’ with ‘FastClock’

Setup Quick introduction to Rhine Let’s hack! After the tutorial

Asynchronous FRP

data Schedule m cl1 cl2

Binary schedules
Execute two different clocks simultaneously.

Can be clock-polymorphic or specific to certain clocks.
(No implementation details here.)
Some examples:

concurrently :: Schedule IO cl1 cl2
schedule :: Schedule (ScheduleT m) cl1 cl2

Setup Quick introduction to Rhine Let’s hack! After the tutorial

Asynchronous FRP

data Schedule m cl1 cl2

Binary schedules
Execute two different clocks simultaneously.

Can be clock-polymorphic or specific to certain clocks.
(No implementation details here.)
Some examples:

concurrently :: Schedule IO cl1 cl2
schedule :: Schedule (ScheduleT m) cl1 cl2

Setup Quick introduction to Rhine Let’s hack! After the tutorial

Asynchronous FRP

data Schedule m cl1 cl2

Binary schedules
Execute two different clocks simultaneously.

Can be clock-polymorphic or specific to certain clocks.

(No implementation details here.)
Some examples:

concurrently :: Schedule IO cl1 cl2
schedule :: Schedule (ScheduleT m) cl1 cl2

Setup Quick introduction to Rhine Let’s hack! After the tutorial

Asynchronous FRP

data Schedule m cl1 cl2

Binary schedules
Execute two different clocks simultaneously.

Can be clock-polymorphic or specific to certain clocks.
(No implementation details here.)

Some examples:

concurrently :: Schedule IO cl1 cl2
schedule :: Schedule (ScheduleT m) cl1 cl2

Setup Quick introduction to Rhine Let’s hack! After the tutorial

Asynchronous FRP

data Schedule m cl1 cl2

Binary schedules
Execute two different clocks simultaneously.

Can be clock-polymorphic or specific to certain clocks.
(No implementation details here.)
Some examples:

concurrently :: Schedule IO cl1 cl2
schedule :: Schedule (ScheduleT m) cl1 cl2

Setup Quick introduction to Rhine Let’s hack! After the tutorial

Asynchronous FRP

data Schedule m cl1 cl2

Binary schedules
Execute two different clocks simultaneously.

Can be clock-polymorphic or specific to certain clocks.
(No implementation details here.)
Some examples:

concurrently :: Schedule IO cl1 cl2

schedule :: Schedule (ScheduleT m) cl1 cl2

Setup Quick introduction to Rhine Let’s hack! After the tutorial

Asynchronous FRP

data Schedule m cl1 cl2

Binary schedules
Execute two different clocks simultaneously.

Can be clock-polymorphic or specific to certain clocks.
(No implementation details here.)
Some examples:

concurrently :: Schedule IO cl1 cl2
schedule :: Schedule (ScheduleT m) cl1 cl2

Setup Quick introduction to Rhine Let’s hack! After the tutorial

Asynchronous FRP

data ResamplingBuffer m cla clb a b = ResamplingBuffer
{ put :: TimeInfo cla -> a

-> m (ResamplingBuffer m cla clb a b)
, get :: TimeInfo clb

-> m (b, ResamplingBuffer m cla clb a b)
}

Resampling buffers
Buffer data at the boundary between two asynchronous systems.

Can be clock-polymorphic or specific to certain clocks.
Some examples

collect :: ResamplingBuffer m cl1 cl2 a [a]
fifo :: ResamplingBuffer m cl1 cl2 a (Maybe a)
keepLast :: a -> ResamplingBuffer m cl1 cl2 a a
Linear interpolation, combinators to build your own. . .

Setup Quick introduction to Rhine Let’s hack! After the tutorial

Asynchronous FRP

data ResamplingBuffer m cla clb a b = ResamplingBuffer
{ put :: TimeInfo cla -> a

-> m (ResamplingBuffer m cla clb a b)
, get :: TimeInfo clb

-> m (b, ResamplingBuffer m cla clb a b)
}

Resampling buffers
Buffer data at the boundary between two asynchronous systems.

Can be clock-polymorphic or specific to certain clocks.
Some examples

collect :: ResamplingBuffer m cl1 cl2 a [a]
fifo :: ResamplingBuffer m cl1 cl2 a (Maybe a)
keepLast :: a -> ResamplingBuffer m cl1 cl2 a a
Linear interpolation, combinators to build your own. . .

Setup Quick introduction to Rhine Let’s hack! After the tutorial

Asynchronous FRP

data ResamplingBuffer m cla clb a b = ResamplingBuffer
{ put :: TimeInfo cla -> a

-> m (ResamplingBuffer m cla clb a b)
, get :: TimeInfo clb

-> m (b, ResamplingBuffer m cla clb a b)
}

Resampling buffers
Buffer data at the boundary between two asynchronous systems.

Can be clock-polymorphic or specific to certain clocks.

Some examples

collect :: ResamplingBuffer m cl1 cl2 a [a]
fifo :: ResamplingBuffer m cl1 cl2 a (Maybe a)
keepLast :: a -> ResamplingBuffer m cl1 cl2 a a
Linear interpolation, combinators to build your own. . .

Setup Quick introduction to Rhine Let’s hack! After the tutorial

Asynchronous FRP

data ResamplingBuffer m cla clb a b = ResamplingBuffer
{ put :: TimeInfo cla -> a

-> m (ResamplingBuffer m cla clb a b)
, get :: TimeInfo clb

-> m (b, ResamplingBuffer m cla clb a b)
}

Resampling buffers
Buffer data at the boundary between two asynchronous systems.

Can be clock-polymorphic or specific to certain clocks.
Some examples

collect :: ResamplingBuffer m cl1 cl2 a [a]
fifo :: ResamplingBuffer m cl1 cl2 a (Maybe a)
keepLast :: a -> ResamplingBuffer m cl1 cl2 a a
Linear interpolation, combinators to build your own. . .

Setup Quick introduction to Rhine Let’s hack! After the tutorial

Asynchronous FRP

data ResamplingBuffer m cla clb a b = ResamplingBuffer
{ put :: TimeInfo cla -> a

-> m (ResamplingBuffer m cla clb a b)
, get :: TimeInfo clb

-> m (b, ResamplingBuffer m cla clb a b)
}

Resampling buffers
Buffer data at the boundary between two asynchronous systems.

Can be clock-polymorphic or specific to certain clocks.
Some examples

collect :: ResamplingBuffer m cl1 cl2 a [a]

fifo :: ResamplingBuffer m cl1 cl2 a (Maybe a)
keepLast :: a -> ResamplingBuffer m cl1 cl2 a a
Linear interpolation, combinators to build your own. . .

Setup Quick introduction to Rhine Let’s hack! After the tutorial

Asynchronous FRP

data ResamplingBuffer m cla clb a b = ResamplingBuffer
{ put :: TimeInfo cla -> a

-> m (ResamplingBuffer m cla clb a b)
, get :: TimeInfo clb

-> m (b, ResamplingBuffer m cla clb a b)
}

Resampling buffers
Buffer data at the boundary between two asynchronous systems.

Can be clock-polymorphic or specific to certain clocks.
Some examples

collect :: ResamplingBuffer m cl1 cl2 a [a]
fifo :: ResamplingBuffer m cl1 cl2 a (Maybe a)

keepLast :: a -> ResamplingBuffer m cl1 cl2 a a
Linear interpolation, combinators to build your own. . .

Setup Quick introduction to Rhine Let’s hack! After the tutorial

Asynchronous FRP

data ResamplingBuffer m cla clb a b = ResamplingBuffer
{ put :: TimeInfo cla -> a

-> m (ResamplingBuffer m cla clb a b)
, get :: TimeInfo clb

-> m (b, ResamplingBuffer m cla clb a b)
}

Resampling buffers
Buffer data at the boundary between two asynchronous systems.

Can be clock-polymorphic or specific to certain clocks.
Some examples

collect :: ResamplingBuffer m cl1 cl2 a [a]
fifo :: ResamplingBuffer m cl1 cl2 a (Maybe a)
keepLast :: a -> ResamplingBuffer m cl1 cl2 a a

Linear interpolation, combinators to build your own. . .

Setup Quick introduction to Rhine Let’s hack! After the tutorial

Asynchronous FRP

data ResamplingBuffer m cla clb a b = ResamplingBuffer
{ put :: TimeInfo cla -> a

-> m (ResamplingBuffer m cla clb a b)
, get :: TimeInfo clb

-> m (b, ResamplingBuffer m cla clb a b)
}

Resampling buffers
Buffer data at the boundary between two asynchronous systems.

Can be clock-polymorphic or specific to certain clocks.
Some examples

collect :: ResamplingBuffer m cl1 cl2 a [a]
fifo :: ResamplingBuffer m cl1 cl2 a (Maybe a)
keepLast :: a -> ResamplingBuffer m cl1 cl2 a a
Linear interpolation, combinators to build your own. . .

Setup Quick introduction to Rhine Let’s hack! After the tutorial

Asynchronous FRP

Asynchronous signal functions
data SN m cl a b -- Signal network
type family In cl
type family Out cl

A clocked reactive program
data Rhine m cl a b

(...basically an SF and a matching clock!)

Execution (reactimation)
flow :: Rhine m cl () () -> m ()

Setup Quick introduction to Rhine Let’s hack! After the tutorial

Asynchronous FRP

Asynchronous signal functions
data SN m cl a b -- Signal network
type family In cl
type family Out cl

A clocked reactive program
data Rhine m cl a b

(...basically an SF and a matching clock!)

Execution (reactimation)
flow :: Rhine m cl () () -> m ()

Setup Quick introduction to Rhine Let’s hack! After the tutorial

Asynchronous FRP

Asynchronous signal functions
data SN m cl a b -- Signal network
type family In cl
type family Out cl

A clocked reactive program
data Rhine m cl a b

(...basically an SF and a matching clock!)

Execution (reactimation)
flow :: Rhine m cl () () -> m ()

Setup Quick introduction to Rhine Let’s hack! After the tutorial

Asynchronous FRP

Synchronous subsystems
cl :: MyClock
sf :: ClSF m MyClock A B
rhineCl :: Rhine m MyClock A B
rhineCl = sf @@ cl

Setup Quick introduction to Rhine Let’s hack! After the tutorial

Asynchronous FRP

Parallel composition
clL :: MyClockL
clR :: MyClockR
sfL :: ClSF m MyClockL C D
sfR :: ClSF m MyClockR C D
schedPar :: Schedule m MyClockL MyClockR
rhinePar = sfL @@ clL **@ schedPar @** syncsfR @@ clR

Sequential composition
buf :: ResamplingBuffer m MyClock (In (..)) B C
schedSeq :: Schedule m ...
rhineSeq = rhineCl >-- buf -@- schedSeq --> rhineP

Setup Quick introduction to Rhine Let’s hack! After the tutorial

Asynchronous FRP

Parallel composition
clL :: MyClockL
clR :: MyClockR
sfL :: ClSF m MyClockL C D
sfR :: ClSF m MyClockR C D
schedPar :: Schedule m MyClockL MyClockR
rhinePar = sfL @@ clL **@ schedPar @** syncsfR @@ clR

Sequential composition
buf :: ResamplingBuffer m MyClock (In (..)) B C
schedSeq :: Schedule m ...
rhineSeq = rhineCl >-- buf -@- schedSeq --> rhineP

Setup Quick introduction to Rhine Let’s hack! After the tutorial

The plan: A tea app
Run several tea timers in parallel
Reactively read tea requests from the console

Any questions before we start hacking?

Setup Quick introduction to Rhine Let’s hack! After the tutorial

The plan: A tea app
Run several tea timers in parallel
Reactively read tea requests from the console

Any questions before we start hacking?

Setup Quick introduction to Rhine Let’s hack! After the tutorial

Have fun!

Setup Quick introduction to Rhine Let’s hack! After the tutorial

What Rhine can do

What else you could (easily) do with Dunai and Rhine
Simple arcade games (SDL, Gloss)
Reactive console apps

What should be doable, but I didn’t do yet because of lazyness
Webservers, server-side web apps
Interactive File I/O
GUI programs
External devices (e.g. Kinect, Wiimote)

What might eventually be feasible
Reactive audio synthesis, processing and analysis
(performance...)
Reactive web apps (GHCJS...)
Android, embedded systems (recent GHC...)

Setup Quick introduction to Rhine Let’s hack! After the tutorial

What Rhine can do

What else you could (easily) do with Dunai and Rhine
Simple arcade games (SDL, Gloss)
Reactive console apps

What should be doable, but I didn’t do yet because of lazyness
Webservers, server-side web apps
Interactive File I/O
GUI programs
External devices (e.g. Kinect, Wiimote)

What might eventually be feasible
Reactive audio synthesis, processing and analysis
(performance...)
Reactive web apps (GHCJS...)
Android, embedded systems (recent GHC...)

Setup Quick introduction to Rhine Let’s hack! After the tutorial

What Rhine can do

What else you could (easily) do with Dunai and Rhine
Simple arcade games (SDL, Gloss)
Reactive console apps

What should be doable, but I didn’t do yet because of lazyness
Webservers, server-side web apps
Interactive File I/O
GUI programs
External devices (e.g. Kinect, Wiimote)

What might eventually be feasible
Reactive audio synthesis, processing and analysis
(performance...)
Reactive web apps (GHCJS...)
Android, embedded systems (recent GHC...)

Setup Quick introduction to Rhine Let’s hack! After the tutorial

Comparison to other frameworks

Framework Pro Rhine Contra Rhine

Yampa, dunai Asynchronicity, clock
types

Performance

Pipes, conduit FRP, clocks Performance?

Most classical
FRP frame-
works

No IO built in, clock
types

?

CλaSH General purpose No compilation to cir-
cuits

Setup Quick introduction to Rhine Let’s hack! After the tutorial

More information

Dunai

github.com/ivanperez-keera/dunai
There’s a link to the article!

Rhine

Article: github.com/turion/rhine#documentation
This tutorial: github.com/turion/rhine-tutorial/
Checkout branch final for solutions
Documentation on hackage
Simple examples in github.com/turion/rhine/

https://github.com/ivanperez-keera/dunai
https://github.com/turion/rhine#documentation
https://github.com/turion/rhine-tutorial/
https://github.com/turion/rhine/

Setup Quick introduction to Rhine Let’s hack! After the tutorial

More information

Dunai
github.com/ivanperez-keera/dunai

There’s a link to the article!

Rhine

Article: github.com/turion/rhine#documentation
This tutorial: github.com/turion/rhine-tutorial/
Checkout branch final for solutions
Documentation on hackage
Simple examples in github.com/turion/rhine/

https://github.com/ivanperez-keera/dunai
https://github.com/turion/rhine#documentation
https://github.com/turion/rhine-tutorial/
https://github.com/turion/rhine/

Setup Quick introduction to Rhine Let’s hack! After the tutorial

More information

Dunai
github.com/ivanperez-keera/dunai
There’s a link to the article!

Rhine

Article: github.com/turion/rhine#documentation
This tutorial: github.com/turion/rhine-tutorial/
Checkout branch final for solutions
Documentation on hackage
Simple examples in github.com/turion/rhine/

https://github.com/ivanperez-keera/dunai
https://github.com/turion/rhine#documentation
https://github.com/turion/rhine-tutorial/
https://github.com/turion/rhine/

Setup Quick introduction to Rhine Let’s hack! After the tutorial

More information

Dunai
github.com/ivanperez-keera/dunai
There’s a link to the article!

Rhine

Article: github.com/turion/rhine#documentation
This tutorial: github.com/turion/rhine-tutorial/
Checkout branch final for solutions
Documentation on hackage
Simple examples in github.com/turion/rhine/

https://github.com/ivanperez-keera/dunai
https://github.com/turion/rhine#documentation
https://github.com/turion/rhine-tutorial/
https://github.com/turion/rhine/

Setup Quick introduction to Rhine Let’s hack! After the tutorial

More information

Dunai
github.com/ivanperez-keera/dunai
There’s a link to the article!

Rhine
Article: github.com/turion/rhine#documentation

This tutorial: github.com/turion/rhine-tutorial/
Checkout branch final for solutions
Documentation on hackage
Simple examples in github.com/turion/rhine/

https://github.com/ivanperez-keera/dunai
https://github.com/turion/rhine#documentation
https://github.com/turion/rhine-tutorial/
https://github.com/turion/rhine/

Setup Quick introduction to Rhine Let’s hack! After the tutorial

More information

Dunai
github.com/ivanperez-keera/dunai
There’s a link to the article!

Rhine
Article: github.com/turion/rhine#documentation
This tutorial: github.com/turion/rhine-tutorial/

Checkout branch final for solutions
Documentation on hackage
Simple examples in github.com/turion/rhine/

https://github.com/ivanperez-keera/dunai
https://github.com/turion/rhine#documentation
https://github.com/turion/rhine-tutorial/
https://github.com/turion/rhine/

Setup Quick introduction to Rhine Let’s hack! After the tutorial

More information

Dunai
github.com/ivanperez-keera/dunai
There’s a link to the article!

Rhine
Article: github.com/turion/rhine#documentation
This tutorial: github.com/turion/rhine-tutorial/
Checkout branch final for solutions

Documentation on hackage
Simple examples in github.com/turion/rhine/

https://github.com/ivanperez-keera/dunai
https://github.com/turion/rhine#documentation
https://github.com/turion/rhine-tutorial/
https://github.com/turion/rhine/

Setup Quick introduction to Rhine Let’s hack! After the tutorial

More information

Dunai
github.com/ivanperez-keera/dunai
There’s a link to the article!

Rhine
Article: github.com/turion/rhine#documentation
This tutorial: github.com/turion/rhine-tutorial/
Checkout branch final for solutions
Documentation on hackage

Simple examples in github.com/turion/rhine/

https://github.com/ivanperez-keera/dunai
https://github.com/turion/rhine#documentation
https://github.com/turion/rhine-tutorial/
https://github.com/turion/rhine/

Setup Quick introduction to Rhine Let’s hack! After the tutorial

More information

Dunai
github.com/ivanperez-keera/dunai
There’s a link to the article!

Rhine
Article: github.com/turion/rhine#documentation
This tutorial: github.com/turion/rhine-tutorial/
Checkout branch final for solutions
Documentation on hackage
Simple examples in github.com/turion/rhine/

https://github.com/ivanperez-keera/dunai
https://github.com/turion/rhine#documentation
https://github.com/turion/rhine-tutorial/
https://github.com/turion/rhine/

Setup Quick introduction to Rhine Let’s hack! After the tutorial

What you can do

Use Rhine at the hackathon and win a nice bar of chocolate!

Create issues on github.com/turion/rhine/ and ask for your
most needed clocks, schedules, resampling buffers etc.!
Look at easy to solve issues on
github.com/ivanperez-keera/dunai!

https://github.com/turion/rhine/
https://github.com/ivanperez-keera/dunai

Setup Quick introduction to Rhine Let’s hack! After the tutorial

What you can do

Use Rhine at the hackathon and win a nice bar of chocolate!
Create issues on github.com/turion/rhine/ and ask for your
most needed clocks, schedules, resampling buffers etc.!

Look at easy to solve issues on
github.com/ivanperez-keera/dunai!

https://github.com/turion/rhine/
https://github.com/ivanperez-keera/dunai

Setup Quick introduction to Rhine Let’s hack! After the tutorial

What you can do

Use Rhine at the hackathon and win a nice bar of chocolate!
Create issues on github.com/turion/rhine/ and ask for your
most needed clocks, schedules, resampling buffers etc.!
Look at easy to solve issues on
github.com/ivanperez-keera/dunai!

https://github.com/turion/rhine/
https://github.com/ivanperez-keera/dunai

	Setup
	Quick introduction to Rhine
	Synchronous arrowized FRP
	Clocks
	Exceptions and control flow
	Asynchronous FRP

	Let's hack!
	After the tutorial
	What Rhine can do
	Comparison to other frameworks

