Manuel Barenz

15. Januar 2020

cabal update

git clone https://github.com/turion/rhine-tutorial/
cd rhine-tutorial

cabal sandbox init

cabal install --only-dependencies

cabal configure

cabal build

cabal run rhine-tutorial

Read documentation on http://hackage.haskell.org/package/rhine
(version 0.1.0.0)!

http://hackage.haskell.org/package/rhine

data MSFm a b = MSF (a -> m (b, MSF m a b))

data MSFm a b = MSF (a -> m (b, MSF m a b))

-- Control.Arrow

(>>) :: MSFmab ->MFmbc ->MSFma c

(¥*¥*) :: MSFmab ->MSFmcd ->MSFm (a,c) (b,d)
arr :: (a ->b) -> MSFmab

data MSFm a b = MSF (a -> m (b, MSF m a b))

-- Control.Arrow

(>>) :: MSFmab ->MSFmbc ->MSFma c

(x**) :: MSFmab ->MSFmcd ->MSF m (a,c) (b,d)
arr :: (a -=>b) -> MSFm ab

-- only dunat
arrM :: (a ->m b) -> MSFm a b

data MSFm a b = MSF (a -> m (b, MSF m a b))

-- Control.Arrow

(>>) :: MSFmab ->MSFmbc ->MSFma c

(x**) :: MSFmab ->MSFmcd ->MSF m (a,c) (b,d)
arr :: (a ->b) -> MSFmab

-- only dunat
arrM :: (a ->m b) -> MSFm a b

@ MSF (Reader Double) is a replacement for FRP.Yampa. SF.

data MSFm a b = MSF (a -> m (b, MSF m a b))

-- Control.Arrow

(>>) :: MSFmab ->MSFmbc ->MSFma c

(x**) :: MSFmab ->MSFmcd ->MSF m (a,c) (b,d)
arr :: (a ->b) -> MSFmab

-- only dunat
arrM :: (a ->m b) -> MSFm a b

@ MSF (Reader Double) is a replacement for FRP.Yampa. SF.
@ Other monads allow for concise FRP paradigms:

data MSFm a b = MSF (a -> m (b, MSF m a b))

-- Control.Arrow

(>>) :: MSFmab ->MSFmbc ->MSFma c

(x**) :: MSFmab ->MSFmcd ->MSF m (a,c) (b,d)
arr :: (a ->b) -> MSFmab

-- only dunat
arrM :: (a ->m b) -> MSFm a b

@ MSF (Reader Double) is a replacement for FRP.Yampa. SF.
@ Other monads allow for concise FRP paradigms:
o State, Reader and Writer give global state variables.

data MSFm a b = MSF (a -> m (b, MSF m a b))

-- Control.Arrow

(>>) :: MSFmab ->MSFmbc ->MSFma c

(x**) :: MSFmab ->MSFmcd ->MSF m (a,c) (b,d)
arr :: (a ->b) -> MSFmab

-- only dunat
arrM :: (a ->m b) -> MSFm a b

@ MSF (Reader Double) is a replacement for FRP.Yampa. SF.
@ Other monads allow for concise FRP paradigms:

o State, Reader and Writer give global state variables.

e List gives branching computations.

data MSFm a b = MSF (a -> m (b, MSF m a b))

-- Control.Arrow

(>>) :: MSFmab ->MSFmbc ->MSFma c

(x**) :: MSFmab ->MSFmcd ->MSF m (a,c) (b,d)
arr :: (a ->b) -> MSFmab

-- only dunat
arrM :: (a ->m b) -> MSFm a b

@ MSF (Reader Double) is a replacement for FRP.Yampa. SF.
@ Other monads allow for concise FRP paradigms:

o State, Reader and Writer give global state variables.

e List gives branching computations.

e Either gives control flow!

data MSFm a b = MSF (a -> m (b, MSF m a b))

-- Control.Arrow

(>>) :: MSFmab ->MSFmbc ->MSFma c

(x**) :: MSFmab ->MSFmcd ->MSF m (a,c) (b,d)
arr :: (a ->b) -> MSFmab

-- only dunat
arrM :: (a ->m b) -> MSFm a b

@ MSF (Reader Double) is a replacement for FRP.Yampa. SF.
@ Other monads allow for concise FRP paradigms:

o State, Reader and Writer give global state variables.

e List gives branching computations.

e Either gives control flow!

@ Support for (entering and leaving) monad transformers.

{-# LANGUAGE Arrows #-}

verboseSum :: MSF I0 Int Int

verboseSum = proc n -> do
s <- sumS < n
_ <- arrM print -< "The sum is now " ++ show s
returnA -<'s

Clock type All relevant properties of the clock, such as ...

Clock type All relevant properties of the clock, such as ...
@ When, and how often, the clock should tick

Clock type All relevant properties of the clock, such as ...

@ When, and how often, the clock should tick
@ Which monad the clock takes side effects in

Clock type All relevant properties of the clock, such as ...
@ When, and how often, the clock should tick
@ Which monad the clock takes side effects in
e What additional data (besides a time stamp) the
clock outputs

Clock type All relevant properties of the clock, such as ...
@ When, and how often, the clock should tick
@ Which monad the clock takes side effects in
e What additional data (besides a time stamp) the
clock outputs

Clock value All information needed to run the clock

Clock type All relevant properties of the clock, such as ...
@ When, and how often, the clock should tick
@ Which monad the clock takes side effects in
e What additional data (besides a time stamp) the
clock outputs

Clock value All information needed to run the clock
o E.g. physical device address, event socket

Clock type All relevant properties of the clock, such as ...
@ When, and how often, the clock should tick
@ Which monad the clock takes side effects in
e What additional data (besides a time stamp) the
clock outputs

Clock value All information needed to run the clock

o E.g. physical device address, event socket
@ Implementation choice

Clock type All relevant properties of the clock, such as ...
@ When, and how often, the clock should tick
@ Which monad the clock takes side effects in
e What additional data (besides a time stamp) the
clock outputs

Clock value All information needed to run the clock

o E.g. physical device address, event socket
@ Implementation choice

Running clock Side-effectful stream of time stamps, tagged with
additional info about the tick.

-- sumplified here

class Clock m cl where
type Time cl -- time stamp
type Tag cl -- additional information about tick
initClock :: ¢l -> MSF m () (TimeInfo cl, Tag cl)

-- sumplified here

class Clock m cl where
type Time cl -- time stamp
type Tag cl -- additional information about tick
initClock :: ¢l -> MSF m () (TimeInfo cl, Tag cl)

data TimeInfo cl = {...}
-- absolute and relative time, tag

A clock produces side effects to...

. wait between ticks,
. measure the current time,

... produce additional data (e.g. events).

A clock produces side effects to...

. wait between ticks,
. measure the current time,

... produce additional data (e.g. events).

o Fixed sample rate (e.g. Millisecond n)
@ Events (e.g. Stdin)

type CISF m cl a b = MSF (ReaderT (TimeInfo cl) m) a b

type CISF m cl a b = MSF (ReaderT (TimeInfo cl) m) a b

arrMCl :: (a -> m b) -> SyncSF m cl a b

type CISF m cl a b = MSF (ReaderT (TimeInfo cl) m) a b

arrMCl :: (a -> m b) -> SyncSF m cl a b

timeInfo :: C1SF m cl () (TimeInfo cl)

type CISF m cl a b = MSF (ReaderT (TimeInfo cl) m) a b

arrMCl :: (a -> m b) -> SyncSF m cl a b

timeInfo :: C1SF m cl () (TimeInfo cl)

integral :: VectorSpace v => C1SF m cl v v

data Either e a = Left e | Right a
newtype ExceptT e m a = ExceptT (m (Either e a))

data Either e a = Left e | Right a
newtype ExceptT e m a = ExceptT (m (Either e a))

-- dunai, rhine (simplified)
newtype ClSFExcept m cl a b e
= C1SFExcept (SyncSF (ExceptT e m) cl a b)

data Either e a = Left e | Right a
newtype ExceptT e m a = ExceptT (m (Either e a))

-- dunai, rhine (simplified)
newtype ClSFExcept m cl a b e
= C1SFExcept (SyncSF (ExceptT e m) cl a b)

instance Monad m => Monad (ClSFExcept m cl a b)

throwOn' :: C1SF (ExceptT e m) cl (Bool, e) (O
try :: C1SF (ExceptT em) cl a b
-> C1SFExcept m cl a b e
safely :: ClSFExcept m cl a b Empty -> SyncSF m cl a b
safe :: CISF m cl a b -> SyncExcept m cl a b e

type SumClock = Millisecond 100

fillUp :: CLSF (ExceptT Double m) SumClock Double ()
fillUp = proc x -> do

s <- integral -< x

_ <- throwOn' -< (s > 5, s)

returnA -< 0O

helloWorld :: ClSFExcept I0 SumClock () () Empty
helloWorld = do

try $ arr (const 1) >>> fillUp

once_ $ putStrLn "Hello World!"

helloWorld

main = flow $ safely helloWorld 0@ waitClock

fastSignal :: C1SF m FastClock () a

slowProcessor :: C1SF m SlowClock ab
clockTypeError = fastSignal >>> slowProcessor

PresentationExamples.hs:67:33: error:
® Couldn't match type ‘SlowClock’ with ‘FastClock’

data Schedule m cll cl2

data Schedule m cll cl2

Execute two different clocks simultaneously.

data Schedule m cll cl2

Execute two different clocks simultaneously.

@ Can be clock-polymorphic or specific to certain clocks.

data Schedule m cll cl2

Execute two different clocks simultaneously.

@ Can be clock-polymorphic or specific to certain clocks.

@ (No implementation details here.)

data Schedule m cll cl2

Execute two different clocks simultaneously.

@ Can be clock-polymorphic or specific to certain clocks.

@ (No implementation details here.)
@ Some examples:

data Schedule m cll cl2

Execute two different clocks simultaneously.

@ Can be clock-polymorphic or specific to certain clocks.

@ (No implementation details here.)
@ Some examples:
e concurrently :: Schedule I0 cl1 cl2

data Schedule m cll cl2

Execute two different clocks simultaneously.

@ Can be clock-polymorphic or specific to certain clocks.
@ (No implementation details here.)

@ Some examples:

e concurrently :: Schedule I0 cl1 cl2
o schedule :: Schedule (ScheduleT m) cli cl2

data ResamplingBuffer m cla clb a b = ResamplingBuffer
{ put :: TimeInfo cla -> a
->m (ResamplingBuffer m cla clb a b)
, get :: TimeInfo clb
-> m (b, ResamplingBuffer m cla clb a b)

}

data ResamplingBuffer m cla clb a b = ResamplingBuffer
{ put :: TimeInfo cla -> a
->m (ResamplingBuffer m cla clb a b)
, get :: TimeInfo clb
-> m (b, ResamplingBuffer m cla clb a b)

}

Buffer data at the boundary between two asynchronous systems.

data ResamplingBuffer m cla clb a b = ResamplingBuffer
{ put :: TimeInfo cla -> a
->m (ResamplingBuffer m cla clb a b)
, get :: TimeInfo clb
-> m (b, ResamplingBuffer m cla clb a b)

}

Buffer data at the boundary between two asynchronous systems.

@ Can be clock-polymorphic or specific to certain clocks.

data ResamplingBuffer m cla clb a b = ResamplingBuffer
{ put :: TimeInfo cla -> a
->m (ResamplingBuffer m cla clb a b)
, get :: TimeInfo clb
-> m (b, ResamplingBuffer m cla clb a b)

}

Buffer data at the boundary between two asynchronous systems.

@ Can be clock-polymorphic or specific to certain clocks.
@ Some examples

data ResamplingBuffer m cla clb a b = ResamplingBuffer
{ put :: TimeInfo cla -> a
->m (ResamplingBuffer m cla clb a b)
, get :: TimeInfo clb
-> m (b, ResamplingBuffer m cla clb a b)

}

Buffer data at the boundary between two asynchronous systems.

@ Can be clock-polymorphic or specific to certain clocks.

@ Some examples
o collect :: ResamplingBuffer m cll cl2 a [a]

data ResamplingBuffer m cla clb a b = ResamplingBuffer
{ put :: TimeInfo cla -> a
->m (ResamplingBuffer m cla clb a b)
, get :: TimeInfo clb
-> m (b, ResamplingBuffer m cla clb a b)

}

Buffer data at the boundary between two asynchronous systems.

@ Can be clock-polymorphic or specific to certain clocks.

@ Some examples

o collect :: ResamplingBuffer m cll cl2 a [a]
o fifo :: ResamplingBuffer m cll cl2 a (Maybe a)

data ResamplingBuffer m cla clb a b = ResamplingBuffer
{ put :: TimeInfo cla -> a
->m (ResamplingBuffer m cla clb a b)
, get :: TimeInfo clb
-> m (b, ResamplingBuffer m cla clb a b)

}

Buffer data at the boundary between two asynchronous systems.

@ Can be clock-polymorphic or specific to certain clocks.

@ Some examples
o collect :: ResamplingBuffer m cll cl2 a [a]
o fifo :: ResamplingBuffer m cll cl2 a (Maybe a)
o keeplLast :: a -> ResamplingBuffer m cll cl2 a a

data ResamplingBuffer m cla clb a b = ResamplingBuffer
{ put :: TimeInfo cla -> a
->m (ResamplingBuffer m cla clb a b)
, get :: TimeInfo clb
-> m (b, ResamplingBuffer m cla clb a b)

}

Buffer data at the boundary between two asynchronous systems.

@ Can be clock-polymorphic or specific to certain clocks.

@ Some examples

collect :: ResamplingBuffer m cll cl2 a [a]
fifo :: ResamplingBuffer m cll cl2 a (Maybe a)
keeplLast :: a -> ResamplingBuffer m cll cl2 a a
Linear interpolation, combinators to build your own. ..

data SN m cl a b -- Signal network
type family In cl
type family Out cl

data SN m cl a b -- Signal network
type family In cl
type family Out cl

data Rhine m cl a b
(...basically an SF and a matching clock!)

data SN m cl a b -- Signal network

type family In cl
type family Out cl

data Rhine m cl a b
(...basically an SF and a matching clock!)

flow :: Rhinemcl () () -=>m ()

cl :: MyClock

sf :: CISF m MyClock A B
rhineCl :: Rhine m MyClock A B
rhineCl = sf 0@ cl

clL :: MyClockL

clR :: MyClockR

sfL :: C1SF m MyClockL C D

sfR :: C1SF m MyClockR C D

schedPar :: Schedule m MyClockL MyClockR

rhinePar = sfL 00 clL **0 schedPar O** syncsfR 00 clR

clL :: MyClockL

clR :: MyClockR

sfL :: C1SF m MyClockL C D

sfR :: C1SF m MyClockR C D

schedPar :: Schedule m MyClockL MyClockR

rhinePar = sfL 00 clL **0 schedPar O** syncsfR 00 clR

buf :: ResamplingBuffer m MyClock (In (..)) B C
schedSeq :: Schedule m ...
rhineSeq = rhineCl >-- buf -0- schedSeq --> rhineP

@ Run several tea timers in parallel

@ Reactively read tea requests from the console

@ Run several tea timers in parallel

@ Reactively read tea requests from the console

Any questions before we start hacking?

Have fun!

@ Simple arcade games (SDL, Gloss)

@ Reactive console apps

@ Simple arcade games (SDL, Gloss)

@ Reactive console apps

o Webservers, server-side web apps
@ Interactive File I/O
@ GUI programs

@ External devices (e.g. Kinect, Wiimote)

What else you could (easily) do with Dunai and Rhine

@ Simple arcade games (SDL, Gloss)

@ Reactive console apps

What should be doable, but I didn’t do yet because of lazyness
o Webservers, server-side web apps
@ Interactive File I/O
@ GUI programs

@ External devices (e.g. Kinect, Wiimote)

What might eventually be feasible

@ Reactive audio synthesis, processing and analysis
(performance...)

@ Reactive web apps (GHCJS...)
o Android embedded csveteme (recent GHC)

Framework Pro Rhine Contra Rhine
Yampa, dunai Asynchronicity, clock Performance
types
Pipes, conduit FRP, clocks Performance?
Most classical No IO built in, clock 7
FRP frame- types
works
CAaSH General purpose No compilation to cir-

cuits

https://github.com/ivanperez-keera/dunai
https://github.com/turion/rhine#documentation
https://github.com/turion/rhine-tutorial/
https://github.com/turion/rhine/

@ github.com/ivanperez-keera/dunai

https://github.com/ivanperez-keera/dunai
https://github.com/turion/rhine#documentation
https://github.com/turion/rhine-tutorial/
https://github.com/turion/rhine/

@ github.com/ivanperez-keera/dunai

@ There's a link to the articlel

https://github.com/ivanperez-keera/dunai
https://github.com/turion/rhine#documentation
https://github.com/turion/rhine-tutorial/
https://github.com/turion/rhine/

@ github.com/ivanperez-keera/dunai

@ There's a link to the articlel

https://github.com/ivanperez-keera/dunai
https://github.com/turion/rhine#documentation
https://github.com/turion/rhine-tutorial/
https://github.com/turion/rhine/

@ github.com/ivanperez-keera/dunai

@ There's a link to the articlel

@ Article: github.com/turion/rhine#documentation

https://github.com/ivanperez-keera/dunai
https://github.com/turion/rhine#documentation
https://github.com/turion/rhine-tutorial/
https://github.com/turion/rhine/

@ github.com/ivanperez-keera/dunai

@ There's a link to the articlel

@ Article: github.com/turion/rhine#documentation
@ This tutorial: github.com/turion/rhine-tutorial/

https://github.com/ivanperez-keera/dunai
https://github.com/turion/rhine#documentation
https://github.com/turion/rhine-tutorial/
https://github.com/turion/rhine/

@ github.com/ivanperez-keera/dunai

@ There's a link to the articlel

@ Article: github.com/turion/rhine#documentation
@ This tutorial: github.com/turion/rhine-tutorial/

@ Checkout branch final for solutions

https://github.com/ivanperez-keera/dunai
https://github.com/turion/rhine#documentation
https://github.com/turion/rhine-tutorial/
https://github.com/turion/rhine/

@ github.com/ivanperez-keera/dunai

@ There's a link to the articlel

@ Article: github.com/turion/rhine#documentation
@ This tutorial: github.com/turion/rhine-tutorial/
@ Checkout branch final for solutions

@ Documentation on hackage

https://github.com/ivanperez-keera/dunai
https://github.com/turion/rhine#documentation
https://github.com/turion/rhine-tutorial/
https://github.com/turion/rhine/

@ github.com/ivanperez-keera/dunai

@ There's a link to the articlel

Article: github.com/turion/rhine#documentation
This tutorial: github.com/turion/rhine-tutorial /
Checkout branch final for solutions

Documentation on hackage

Simple examples in github.com/turion/rhine/

https://github.com/ivanperez-keera/dunai
https://github.com/turion/rhine#documentation
https://github.com/turion/rhine-tutorial/
https://github.com/turion/rhine/

@ Use Rhine at the hackathon and win a nice bar of chocolate!

https://github.com/turion/rhine/
https://github.com/ivanperez-keera/dunai

@ Use Rhine at the hackathon and win a nice bar of chocolate!

o Create issues on github.com/turion/rhine/ and ask for your
most needed clocks, schedules, resampling buffers etc.!

https://github.com/turion/rhine/
https://github.com/ivanperez-keera/dunai

@ Use Rhine at the hackathon and win a nice bar of chocolate!

o Create issues on github.com/turion/rhine/ and ask for your
most needed clocks, schedules, resampling buffers etc.!

@ Look at easy to solve issues on
github.com /ivanperez-keera/dunai!

https://github.com/turion/rhine/
https://github.com/ivanperez-keera/dunai

	Setup
	Quick introduction to Rhine
	Synchronous arrowized FRP
	Clocks
	Exceptions and control flow
	Asynchronous FRP

	Let's hack!
	After the tutorial
	What Rhine can do
	Comparison to other frameworks

